Free Access
Med Sci (Paris)
Volume 17, Number 12, Décembre 2001
Page(s) 1260 - 1269
Section Articles de Synthèse
Published online 15 December 2001
  1. Udagawa N, Takahashi N, Akatsu T, et al. Origin of osteoclasts : mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 1990; 87 : 7260–4. [Google Scholar]
  2. Ducy P, Schinke T, Karsenty G. The osteoblast : a sophisticated fibroblast under central surveillance. Science 2000; 289 : 1501–4. [Google Scholar]
  3. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin : a novel secreted protein involved in the regulation of bone density. Cell 1997; 89 : 309–19. [Google Scholar]
  4. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93 : 165–76. [Google Scholar]
  5. Teitelbaum S. Bone resorption by osteoclasts. Science 2000; 289 : 1504–8. [Google Scholar]
  6. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Sience 2000; 289 : 1508–14. [Google Scholar]
  7. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20 : 345–57. [Google Scholar]
  8. Franzoso G, Carlson L, Xing L, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11 : 3482–96. [Google Scholar]
  9. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13 : 2412–24. [Google Scholar]
  10. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12 : 1260–8. [Google Scholar]
  11. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397 : 315–23. [Google Scholar]
  12. Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97 : 1566–71. [Google Scholar]
  13. Grigoriadis A, Wang Z, Cecchini M, et al. c-fos : a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266 : 443–8. [Google Scholar]
  14. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 2000; 6 : 980–4. [Google Scholar]
  15. Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption : evidence for a low pH in resorbing lacunae and localization of a 100 kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985; 101 : 2210–22. [Google Scholar]
  16. Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar MG. Polarized secretion of lysosomal enzymes : co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 1988; 106 : 1863–72. [Google Scholar]
  17. Baron R, Neff L, Roy C, Boisvert A, Caplan M. Evidence for a high and specific concentration of (Na+, K+)-ATPase in the plasma membrane of the osteoclast. Cell 1986; 46 : 311–20. [Google Scholar]
  18. Vaananen HK, Horton M. The osteoclast clear zone is a specialized cellextracellular matrix adhesion structure. J Cell Sci 1995; 108 : 2729–32. [Google Scholar]
  19. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK. Removal of osteoclast bone resorption products by transcytosis. Science 1997; 276 : 270–3. [Google Scholar]
  20. Ali NN, Boyde Q, Jones SJ. Motility and resorption : osteoclastic activity in vitro. Anat Embryol 1984; 170 : 51–6. [Google Scholar]
  21. Lakkakorpi PT, Vaananen HK. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 1991; 6 ; 817–26. [Google Scholar]
  22. Kanehisa J, Heersche JNM. Osteoclastic bone resorption : in vitro analysis of the rate of resorption and migration of individual osteoclasts. Bone 1988; 9 : 73–9. [Google Scholar]
  23. Marchisio PC, Cirillo D, Naldini MV, Teti A, Zambonin-Zallone A. Cell-subtratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 1984; 99 : 1696–705. [Google Scholar]
  24. Teti A, Marchisio PC, Zambonin-Zallone A. Clear zone in osteoclast function : role of podosomes in regulation of resorbing activity. Am J Physiol 1991; 261 : C1-C7. [Google Scholar]
  25. Marchisio PC, Cirillo D, Teti A, Zambonin-Zallone A, Tarone G. Rous sarcoma virus-transfomed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytopkeletal proteins involved in microfilament-membrane interactions. Exp Cell Res 1987; 169 : 202–14. [Google Scholar]
  26. Lakkakorpi P, Tuukkanin J, Hentunun T, Jarvelin K, Vaananen K. Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 1989; 4 : 817–25. [Google Scholar]
  27. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion : RGD and integrins. Science 1987; 238 : 491–7. [Google Scholar]
  28. Horton MA, Davies J. Perspectives adhesion receptors in bone. J Bone Miner Res 1989; 4 : 803–7. [Google Scholar]
  29. King KL, D’Anza JJ, Bodary S, et al. Effects of kistrin on bone resorption in vitro and serum calcium in vivo. J Bone Miner Res 1994; 9 : 381–7. [Google Scholar]
  30. McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 2000; 105 : 433–40. [Google Scholar]
  31. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. Osteopetrosis in src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA 1993; 90 : 4485–9. [Google Scholar]
  32. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64 : 693–702. [Google Scholar]
  33. Horne WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R. Osteoclasts express high levels of pp60 c-src in association with intracellular membranes. J Cell Biol 1992; 119 : 1003–13. [Google Scholar]
  34. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors : dissociation from transcriptional activity. Cell 2001; 104 : 719–30. [Google Scholar]
  35. Sanjay A, Houghton A, Neff L, et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrinmediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 2001; 152 : 181–95. [Google Scholar]
  36. Schwartzberg PL, Xing L, Hoffmann O, et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src−/− mutant mice. Genes Dev 1997; 11 : 2835–44. [Google Scholar]
  37. Zhao W, Byrne MH, Boyce BF, Krane SM. Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. J Clin Invest 1999; 103 : 517–24. [Google Scholar]
  38. Sims NA, Aoki K, Bogdanovich Z, et al. Impaired osteoclast function in Pyk2 knockout mice and cumulative effects in Pyk2/Src double knockout. J Bone Miner Res 1999; 14 (suppl 1) : S183. [Google Scholar]
  39. Tanaka S, Amling M, Neff L, et al. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 1996; 383 : 528–31. [Google Scholar]
  40. Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol 2000; 148 : 665–78. [Google Scholar]
  41. Yokouchi M, Kondo T, Sanjay A, et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276 : 35185–93. [Google Scholar]
  42. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989; 245 : 855–7. [Google Scholar]
  43. Chatterjee D, Neff L, Chakraborty M, et al. Sensitivity to vanadate and isoformes of subunits A and B distinguish the osreoclast proton-pump from other vacuolar H+-ATPases. Proc Natl Acad Sci USA 1992; 89 : 6257–61. [Google Scholar]
  44. Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97 : 1566–71. [Google Scholar]
  45. Li YP, Chen W, Liang Y, Li E, Stashenko P. Atp6i-deficient mice exhibit severe osteo-petrosis due to loss of osteoclastmediated extracellular acidification. Nat Genet 1999; 23 : 447–51. [Google Scholar]
  46. Scimeca JC, Franchi A, Trojani C, et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteos-clerotic (oc/oc) mutants. Bone 2000; 26 : 207–13. [Google Scholar]
  47. Frattini A, Orchard PJ, Sobacchi C, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000; 25 : 343–6. [Google Scholar]
  48. Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH. Passive chloride permeability charge coupled to H+-ATPase of avian osteoclast ruffled membrane. Am J Physiol 1991; 260 : C1315–24. [Google Scholar]
  49. Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104 : 205–15. [Google Scholar]
  50. Teti A, Blair HC, Teitelbaum SL, et al. Cytoplasmic pH regulation and chloride bicarbonate exchange in avian osteoclasts. J Clin Invest 1989; 83 : 227–33. [Google Scholar]
  51. Ravesloot JH, Eisen T, Baron R, Boron W. Role of Na-H exchangers and vacuolar H+ pumps in intracellular pH regulation I neonatal rat osteoclasts. J Gen Physiol 1995; 105 : 177–208. [Google Scholar]
  52. Bekker PJ, Gay CV. Biochemical charcterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 1990; 5 : 569–79. [Google Scholar]
  53. Chakraborty M, Chatterjee D, Gorelick FS, Baron R. Cell cycle-dependent and kinase-specific regulation of the apical Na/H exchanger and the Na,K-ATPase in the kidney cell line LLC-PK1 by calcitonin. Proc Natl Acad Sci USA 1994; 91 : 2115–9. [Google Scholar]
  54. Santhanagopal A, Chidiac P, Horne WC, Baron R, Dixon SJ. Calcitonin (ct) rapidly increases na(+)/h(+) exchange and metabolic acid production : effects mediated selectively by the c1a ct receptor isoform. Endocrinology 2001; 142 : 4401–13. [Google Scholar]
  55. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 1996; 2 : 1132–6. [Google Scholar]
  56. Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA. Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 1999; 274 : 34967–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.