Free Access
Issue |
Med Sci (Paris)
Volume 17, Number 12, Décembre 2001
|
|
---|---|---|
Page(s) | 1242 - 1251 | |
Section | Articles de Synthèse | |
DOI | https://doi.org/10.1051/medsci/200117121242 | |
Published online | 15 December 2001 |
- Zakany J, Duboule D. Hox genes in digit development and evolution. Cell Tissue Res 1999; 296 : 19–25. [Google Scholar]
- Olsen BJ, Reginato AM, Wang W. Bone Development. Annu Rev Cell Dev Biol 2000; 16 : 191–220. [Google Scholar]
- Karsenty G. Genetics of skeletogenesis. Dev Genet 1998; 22 : 301–13. [Google Scholar]
- Min H, Danilenko M, Scully S, et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 1998; 12 : 3156–61. [Google Scholar]
- Hogan BLM. Bone morphogenetic proteins : multifunctional regulators of vertebrate development. Genes Dev 1996; 10 : 1580–94. [Google Scholar]
- Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6 : 348–55. [Google Scholar]
- van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 2000; 24 : 342–3. [Google Scholar]
- Peters H, Wilm E, Sakai N, Imai K, Maas R, Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development 1999; 126 : 5399–408. [Google Scholar]
- Satokata I, Ma L, Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000; 24 : 391–5. [Google Scholar]
- Ducy P. Cbfa1 : a molecular switch in osteoblast biology. Dev Dyn 2000; 219 : 461- 71. [Google Scholar]
- Wilkie AOM. Craniosynostosis : genes and mechanisms. Hum Mol Gen 1997; 6 : 1647–56. [Google Scholar]
- Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng CX. A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Gen 2000; 9 : 2001–8. [Google Scholar]
- El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the Twist gene in the Saethre-Chotzen syndrome. Nat Genet 1997; 15 : 42–6. [Google Scholar]
- Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Sathre-Chotzen syndrome. Nat Genet 1997; 15 : 36–41. [Google Scholar]
- Rice DPC, Aberg T, Chan YS, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127 : 1845–55. [Google Scholar]
- Jabs EW, Muller U, Li X, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 575 : 443–50. [Google Scholar]
- Liu YH, Kundu E, Wu L, et al. Premature suture closure and ectopic cranial bone in mice expressing Msx2 trransgene in the developing skull. Proc Natl Acad Sci USA 1995; 92 : 6137–41. [Google Scholar]
- Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 1998; 16 : 529–40. [Google Scholar]
- Bi W, Deng JM, Zhang Z, Behringer R, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet 1999; 22 : 85–9. [Google Scholar]
- Smits P, Li P, Mandel J, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001; 1 : 277–90. [Google Scholar]
- Colnot C, Sidhu SS, Balmain N, Poirier F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol 2001; 229 : 203–14. [Google Scholar]
- Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders : the achondroplasia family of skeletal dysplasia, Muenken craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrinol Rev 2000; 21 : 23–39. [Google Scholar]
- Nasaki MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13 : 233–6. [Google Scholar]
- Coffin JD, Florkiewicz RZ, Neumann J, et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 1995; 6 : 1861–73. [Google Scholar]
- Garofalo S, Kliger-Spatz M, Cooke JL, et al. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. J Bone Miner Res 1999; 14 : 1909–15. [Google Scholar]
- Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12 : 390–7. [Google Scholar]
- Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84 : 911–21. [Google Scholar]
- Chen L, Adar R, Yang X, et al. Gly369Cys mutationin mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999; 104 : 1517–25. [Google Scholar]
- Su WCS, Kitagawa M, Xue N, et al. Activation of Stat1 by mutant fibroblast growthfactor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386 : 288–92. [Google Scholar]
- Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 1999; 13 : 1361–6. [Google Scholar]
- Iwata T, Chen L, Li C, et al. A neonatal lethal mutationin FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Gen 2000; 9 : 1603–13. [Google Scholar]
- Segev O, Chumakov I, Nevo Z, et al. Restrained chondrocyte proliferation and maturation with abnormal growth plate vascularization and ossification in human FGFR-3G380R transgenic mice. Hum Mol Gen 2000; 9 : 249–58. [Google Scholar]
- Iwata T, Li C, Deng CX, Francomano CA. Highly activated Ffgr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Gen 2001; 10 : 1255–64. [Google Scholar]
- Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994; 8 : 277–89. [Google Scholar]
- Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 1996; 93 : 10240–5. [Google Scholar]
- Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996; 273 : 663–6. [Google Scholar]
- Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-Related protein. Science 1996; 273 : 613–22. [Google Scholar]
- Hock JM. Anabolic actions of PTH in the skeletons of animals. J Musculoskel Neuron Interact 2001; 2 : 33–47. [Google Scholar]
- Lanske B, Amling M, Neff LA, Guiducci J, Baron R, Kronenberg HM. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 1999; 104 : 399–407. [Google Scholar]
- Jobert AS, Zhang P, Couvineau A, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormonerelated peptide in blomstrand chondrodysplasia. J Clin Invest 1998; 102 : 34–40. [Google Scholar]
- Karaplis AC, He B, Nguyen MTA, et al. Inactivating mutation in the human parathyroid hormone receptor type I gene in blomstrand chondrodysplasia. Endocrinology 1998; 139 : 5255–8. [Google Scholar]
- Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995; 268 : 98–100. [Google Scholar]
- Schipani E, Lanske B, Hunzelman J, et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone- related peptide. Proc Natl Acad Sci USA 1997; 94 : 13689–94. [Google Scholar]
- Chung UI, Lanske B, Lee K, Li E, Kronenberg HM. The parathyroid hormone/ parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc Natl Acad Sci USA 1998; 95 : 13030–5. [Google Scholar]
- St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13 : 2072–86. [Google Scholar]
- Karp SJ, Schipani R, St-Jacques B, Hunzelman J, Kronenberg HM. Indian Hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and – independent. Development 2000; 127 : 543–8. [Google Scholar]
- Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in non-hypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocytes differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 2001; 15 : 467–81. [Google Scholar]
- Ueta C, Iwamoto M, Kanatani N, et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 2001; 153: 87–99. [Google Scholar]
- Gerber HP, Vu T, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5 : 623–8. [Google Scholar]
- Zelzer E, Glotzer DJ, Hartmann C, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev 2001; 106 : 97–106. [Google Scholar]
- Haigh JJ, Gerber HP, Ferrara N, Wagner EF. Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 2000; 127 : 1445–53. [Google Scholar]
- Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107 : 295–304. [Google Scholar]
- Thomas DM, Carty SA, Piscopo DM, et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 2001; 8 : 303–16. [Google Scholar]
- Hansen MF, Koufos A, Gallie BL, et al. Osteosarcoma and retinoblastoma : a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 1985; 82 : 6216–20. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.