Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 10, Octobre 2023
Page(s) 703 - 706
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2023115
Publié en ligne 9 novembre 2023
  1. NaikS, BouladouxN, LinehanJL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015 ; 520 : 104–108. [CrossRef] [PubMed] [Google Scholar]
  2. Linehan JL, Harrison OJ, Han SJ, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 2018; 172 : 784–96 e718. [CrossRef] [PubMed] [Google Scholar]
  3. Chen YE, Bousbaine D, Veinbachs A, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 2023; 380 : 203–10. [CrossRef] [PubMed] [Google Scholar]
  4. Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020; 585 : 107–12. [CrossRef] [PubMed] [Google Scholar]
  5. Youn JW, Hur SY, Woo JW, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol 2020; 21 : 1653–60. [CrossRef] [PubMed] [Google Scholar]
  6. Palmer CD, Rappaport AR, Davis MJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med 2022; 28 : 1619–29. [CrossRef] [PubMed] [Google Scholar]
  7. Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023 : 1–7. [Google Scholar]
  8. Karaki S, Blanc C, Tran T, et al. CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. J Immunother Cancer 2021; 9 : e001948. [CrossRef] [PubMed] [Google Scholar]
  9. TanoueT, MoritaS, PlichtaDR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019 ; 565 : 600–605. [CrossRef] [PubMed] [Google Scholar]
  10. Derosa L, Routy B, Desilets A et al. Microbiota-centered interventions: The next breakthrough in immuno-oncology? Cancer Discov 2021; 10 : 2396–412. [CrossRef] [PubMed] [Google Scholar]
  11. Tagliamonte M, Cavalluzzo B, Mauriello A, et al. Molecular mimicry and cancer vaccine development. Mol Cancer 2023; 22 : 75. [CrossRef] [PubMed] [Google Scholar]
  12. GebhardtC, NemethJ, AngelP, et al. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006 ; 72 : 1622–1631. [CrossRef] [PubMed] [Google Scholar]
  13. Lynn DJ, Benson SC, Lynn MA, et al. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol 2022; 22 : 33–46. [CrossRef] [PubMed] [Google Scholar]
  14. AtarashiK, TanoueT, ShimaT, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011 ; 331 : 337–341. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.