Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 4, Avril 2023
Page(s) 313 - 316
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2023036
Publié en ligne 24 avril 2023
  1. Saudou F, Humbert S. The biology of huntingtin. Neuron 2016 ; 89 : 910–926. [CrossRef] [PubMed] [Google Scholar]
  2. Berrios GE, Wagle AC, Marková IS, et al. Psychiatric symptoms in neurologically asymptomatic Huntington’s disease gene carriers: A comparison with gene negative at risk subjects. Acta Psychiatr Scand 2002 ; 105 : 224–230. [CrossRef] [PubMed] [Google Scholar]
  3. Lawrence AD, Hodges JR, Rosser AE, et al. Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 1998 ; 121 : 1329–1341. [CrossRef] [PubMed] [Google Scholar]
  4. Paulsen JS, Long JD, Johnson HJ, et al. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. Front Aging Neurosci 2014 ; 6 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  5. Schippling S, Schneider SA, Bhatia KP, et al. Abnormal motor cortex excitability in preclinical and very early Huntington’s disease. Biol Psychiatry 2009 ; 65 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  6. Tabrizi SJ, Scahill RI, Owen G, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurol 2013 ; 12 : 637–649. [CrossRef] [PubMed] [Google Scholar]
  7. Nopoulos PC, Aylward EH, Ross CA, et al. Smaller intracranial volume in prodromal Huntington’s disease: Evidence for abnormal neurodevelopment. Brain 2011 ; 134 : 137–142. [CrossRef] [PubMed] [Google Scholar]
  8. Barnat M, Capizzi M, Aparicio E, et al. Huntington’s disease alters human neurodevelopment. Science 2020; 369 :787–93. [CrossRef] [PubMed] [Google Scholar]
  9. Molina-Calavita M, Barnat M, Elias S, et al. Mutant huntingtin affects cortical progenitor cell division and development of the mouse neocortex. J Neurosci 2014 ; 34 : 10034–10040. [CrossRef] [PubMed] [Google Scholar]
  10. Molero AE, Arteaga-Bracho EE, Chen CH, et al. Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci USA 2016 ; 113 : 5736–5741. [CrossRef] [PubMed] [Google Scholar]
  11. Barnat M, le Friec J, Benstaali C, Humbert S. Huntingtin-mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron 2017 ; 93 : 1–16. [Google Scholar]
  12. McKinstry SU, Karadeniz YB, Worthington AK, et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci 2014 ; 34 : 9455–9472. [CrossRef] [PubMed] [Google Scholar]
  13. Capizzi M, Carpentier R, Denarier E, et al. Developmental defects in Huntington’s disease show that axonal growth and microtubule reorganization require NUMA1. Neuron 2021; 110 : 36–50. [Google Scholar]
  14. Chen W, Prithviraj R, Mahnke AH, et al. AMPA glutamate receptor subunits 1 and 2 regulate dendrite complexity and spine motility in neurons of the developing neocortex. Neuroscience 2009 ; 159 : 172–182. [CrossRef] [PubMed] [Google Scholar]
  15. Jiang H, Jiang W, Zou J, et al. The GluN2B subunit of N-methy-D-asparate receptor regulates the radial migration of cortical neurons in vivo. Brain Res 2015 ; 1610 : 20–32. [CrossRef] [PubMed] [Google Scholar]
  16. Braz BY, Wennagel D, Ratié L, et al. Treating early postnatal circuit defect delays Huntingtons disease onset and pathology in mice. Science 2022; 377 : eabq5011. [CrossRef] [PubMed] [Google Scholar]
  17. Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington’s disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathology 2016 ; 26 : 752–771. [CrossRef] [Google Scholar]
  18. Virlogeux A, Scaramuzzino C, Lenoir S, et al. Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. Sci Adv 2021; 7 : eabb0799. [CrossRef] [PubMed] [Google Scholar]
  19. Kirischuk S, Sinning A, Blanquie O, et al. Modulation of neocortical development by early neuronal activity: Physiology and pathophysiology. Front Cell Neurosci 2017 ; 11 : 1–21. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.