Open Access
Issue |
Med Sci (Paris)
Volume 39, Number 1, Janvier 2023
|
|
---|---|---|
Page(s) | 23 - 30 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022192 | |
Published online | 24 January 2023 |
- Bam R, Ling W, Khan S, et al. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 2013 ; 88 : 463–471. [CrossRef] [PubMed] [Google Scholar]
- Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996 ; 382 : 635–638. [CrossRef] [PubMed] [Google Scholar]
- Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998 ; 95 : 9448–9453. [CrossRef] [PubMed] [Google Scholar]
- Tashiro K, Nakano T, Honjo T. Signal Sequence Trap: Expression Cloning Method for Secreted Proteins and Type 1 Membrane Proteins. cDNA Library Protocols. New Jersey : Humana Press, 1993 : 203–20. [Google Scholar]
- Chen S-S, Chang BY, Chang S, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia 2016 ; 30 : 833–843. [CrossRef] [PubMed] [Google Scholar]
- Moore CAC, Milano SK, Benovic JLRegulation of Receptor Trafficking by GRKs and Arrestins. Annu Rev Physiol 2007 ; 69 : 451–482. [CrossRef] [PubMed] [Google Scholar]
- Fong AM, Premont RT, Richardson RM, et al. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 2002 ; 99 : 7478–7483. [CrossRef] [PubMed] [Google Scholar]
- Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003 ; 34 : 70–74. [CrossRef] [PubMed] [Google Scholar]
- Sugiyama T, Kohara H, Noda M, et al. Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow Stromal Cell Niches. Immunity 2006 ; 25 : 977–988. [CrossRef] [PubMed] [Google Scholar]
- Freitas C, Wittner M, Nguyen J, et al. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J Exp Med 2017 ; 214 : 2023–2040. [CrossRef] [PubMed] [Google Scholar]
- Cordeiro Gomes A, Hara T, Lim VY, et al. Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity 2016; 45 : 1219–31. [CrossRef] [PubMed] [Google Scholar]
- Mandal M, Okoreeh MK, Kennedy DE, et al. CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis. Nat Immunol 2019 ; 20 : 1393–1403. [CrossRef] [PubMed] [Google Scholar]
- Purohit SJDetermination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J 2003 ; 22 : 5511–5521. [CrossRef] [PubMed] [Google Scholar]
- Beck TC, Gomes AC, Cyster JG, et al. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med 2014 ; 211 : 2567–2581. [CrossRef] [PubMed] [Google Scholar]
- Koenen J, Bachelerie F, Balabanian K, et al. Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Mol Pharmacol 2019 ; 96 : 809–818. [CrossRef] [PubMed] [Google Scholar]
- Radice E, Ameti R, Melgrati S, et al. Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Rep 2020; 32 : 107951. [CrossRef] [PubMed] [Google Scholar]
- Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7–What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98 : 577–85. [CrossRef] [PubMed] [Google Scholar]
- Quinn KE, Mackie DI, Caron KMEmerging roles of Atypical Chemokine Receptor 3 (ACKR3) in normal development and physiology. Cytokine 2018 ; 109 : 17–23. [CrossRef] [PubMed] [Google Scholar]
- Victora GD, Schwickert TA, Fooksman DR, et al. Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Cell 2010 ; 143 : 592–605. [CrossRef] [PubMed] [Google Scholar]
- Shulman Z, Gitlin AD, Weinstein JS, et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 2014 ; 345 : 1058–1062. [CrossRef] [PubMed] [Google Scholar]
- Ersching J, Efeyan A, Mesin L, et al. Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase. Immunity 2017 ; 46 : 1045–58e6. [CrossRef] [PubMed] [Google Scholar]
- Shinnakasu R, Kurosaki TRegulation of memory B and plasma cell differentiation. Curr Opin Immunol 2017 ; 45 : 126–131. [CrossRef] [PubMed] [Google Scholar]
- Rodda LB, Bannard O, Ludewig B, et al. Phenotypic and Morphological Properties of Germinal Center Dark Zone Cxcl12 -Expressing Reticular Cells. J Immunol 2015 ; 195 : 4781–4791. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Cho B, Suzuki K, et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 2011 ; 208 : 2497–2510. [CrossRef] [PubMed] [Google Scholar]
- Barinov A, Luo L, Gasse P, et al. Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc Natl Acad Sci USA 2017 ; 114 : 2319–2324. [CrossRef] [PubMed] [Google Scholar]
- Caron G, Le Gallou S, Lamy T, et al. CXCR4 Expression Functionally Discriminates Centroblasts versus Centrocytes within Human Germinal Center B Cells. J Immunol 2009 ; 182 : 7595–7602. [CrossRef] [PubMed] [Google Scholar]
- Weber TSCell Cycle-Associated CXCR4 Expression in Germinal Center B Cells and Its Implications on Affinity Maturation. Front Immunol 2018 ; 9 : 1313. [CrossRef] [PubMed] [Google Scholar]
- Allen CDC, Ansel KM, Low C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004 ; 5 : 943–952. [CrossRef] [PubMed] [Google Scholar]
- Dominguez-Sola D, Kung J, Holmes AB, et al. The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program. Immunity 2015 ; 43 : 1064–1074. [CrossRef] [PubMed] [Google Scholar]
- Sander S, Chu VT, Yasuda T, et al. PI3 Kinase and FOXO1 Transcription Factor Activity Differentially Control B Cells in the Germinal Center Light and Dark Zones. Immunity 2015 ; 43 : 1075–1086. [CrossRef] [PubMed] [Google Scholar]
- Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004 ; 104 : 444–452. [CrossRef] [PubMed] [Google Scholar]
- Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine 2010 ; 28 : 4837–4841. [CrossRef] [PubMed] [Google Scholar]
- Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood 2012 ; 119 : 5722–5730. [CrossRef] [PubMed] [Google Scholar]
- Biajoux V, Natt J, Freitas C, et al. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization. Cell Rep 2016 ; 17 : 193–205. [CrossRef] [PubMed] [Google Scholar]
- Slifka MK, Antia R, Whitmire JK, et al. Humoral Immunity Due to Long-Lived Plasma Cells. Immunity 1998 ; 8 : 363–372. [CrossRef] [PubMed] [Google Scholar]
- Hargreaves DC, Hyman PL, Lu TT, et al. A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. J Exp Med 2001 ; 194 : 45–56. [CrossRef] [PubMed] [Google Scholar]
- Hauser AE, Debes GF, Arce S, et al. Chemotactic Responsiveness Toward Ligands for CXCR3 and CXCR4 Is Regulated on Plasma Blasts During the Time Course of a Memory Immune Response. J Immunol 2002 ; 169 : 1277–1282. [CrossRef] [PubMed] [Google Scholar]
- Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular Niches Controlling B Lymphocyte Behavior within Bone Marrow during Development. Immunity 2004 ; 20 : 707–718. [CrossRef] [PubMed] [Google Scholar]
- Alouche N, Bonaud A, Rondeau V, et al. Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood 2021; 137 : 3050–63. [CrossRef] [PubMed] [Google Scholar]
- Kay JE, Kromwel L, Doe SEA, et al. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 1991 ; 72 : 544–549. [PubMed] [Google Scholar]
- Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immun 2012; 3. [Google Scholar]
- Belnoue E, Pihlgren M, McGaha TL, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008 ; 111 : 2755–2764. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.