Open Access
Numéro |
Med Sci (Paris)
Volume 39, Numéro 1, Janvier 2023
|
|
---|---|---|
Page(s) | 23 - 30 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022192 | |
Publié en ligne | 24 janvier 2023 |
- Bam R, Ling W, Khan S, et al. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 2013 ; 88 : 463–471. [CrossRef] [PubMed] [Google Scholar]
- Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996 ; 382 : 635–638. [CrossRef] [PubMed] [Google Scholar]
- Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998 ; 95 : 9448–9453. [CrossRef] [PubMed] [Google Scholar]
- Tashiro K, Nakano T, Honjo T. Signal Sequence Trap: Expression Cloning Method for Secreted Proteins and Type 1 Membrane Proteins. cDNA Library Protocols. New Jersey : Humana Press, 1993 : 203–20. [Google Scholar]
- Chen S-S, Chang BY, Chang S, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia 2016 ; 30 : 833–843. [CrossRef] [PubMed] [Google Scholar]
- Moore CAC, Milano SK, Benovic JLRegulation of Receptor Trafficking by GRKs and Arrestins. Annu Rev Physiol 2007 ; 69 : 451–482. [CrossRef] [PubMed] [Google Scholar]
- Fong AM, Premont RT, Richardson RM, et al. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 2002 ; 99 : 7478–7483. [CrossRef] [PubMed] [Google Scholar]
- Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003 ; 34 : 70–74. [CrossRef] [PubMed] [Google Scholar]
- Sugiyama T, Kohara H, Noda M, et al. Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow Stromal Cell Niches. Immunity 2006 ; 25 : 977–988. [CrossRef] [PubMed] [Google Scholar]
- Freitas C, Wittner M, Nguyen J, et al. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J Exp Med 2017 ; 214 : 2023–2040. [CrossRef] [PubMed] [Google Scholar]
- Cordeiro Gomes A, Hara T, Lim VY, et al. Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. Immunity 2016; 45 : 1219–31. [CrossRef] [PubMed] [Google Scholar]
- Mandal M, Okoreeh MK, Kennedy DE, et al. CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis. Nat Immunol 2019 ; 20 : 1393–1403. [CrossRef] [PubMed] [Google Scholar]
- Purohit SJDetermination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J 2003 ; 22 : 5511–5521. [CrossRef] [PubMed] [Google Scholar]
- Beck TC, Gomes AC, Cyster JG, et al. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med 2014 ; 211 : 2567–2581. [CrossRef] [PubMed] [Google Scholar]
- Koenen J, Bachelerie F, Balabanian K, et al. Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System. Mol Pharmacol 2019 ; 96 : 809–818. [CrossRef] [PubMed] [Google Scholar]
- Radice E, Ameti R, Melgrati S, et al. Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Rep 2020; 32 : 107951. [CrossRef] [PubMed] [Google Scholar]
- Koch C, Engele J. Functions of the CXCL12 Receptor ACKR3/CXCR7–What Has Been Perceived and What Has Been Overlooked. Mol Pharmacol 2020; 98 : 577–85. [CrossRef] [PubMed] [Google Scholar]
- Quinn KE, Mackie DI, Caron KMEmerging roles of Atypical Chemokine Receptor 3 (ACKR3) in normal development and physiology. Cytokine 2018 ; 109 : 17–23. [CrossRef] [PubMed] [Google Scholar]
- Victora GD, Schwickert TA, Fooksman DR, et al. Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Cell 2010 ; 143 : 592–605. [CrossRef] [PubMed] [Google Scholar]
- Shulman Z, Gitlin AD, Weinstein JS, et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 2014 ; 345 : 1058–1062. [CrossRef] [PubMed] [Google Scholar]
- Ersching J, Efeyan A, Mesin L, et al. Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase. Immunity 2017 ; 46 : 1045–58e6. [CrossRef] [PubMed] [Google Scholar]
- Shinnakasu R, Kurosaki TRegulation of memory B and plasma cell differentiation. Curr Opin Immunol 2017 ; 45 : 126–131. [CrossRef] [PubMed] [Google Scholar]
- Rodda LB, Bannard O, Ludewig B, et al. Phenotypic and Morphological Properties of Germinal Center Dark Zone Cxcl12 -Expressing Reticular Cells. J Immunol 2015 ; 195 : 4781–4791. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Cho B, Suzuki K, et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 2011 ; 208 : 2497–2510. [CrossRef] [PubMed] [Google Scholar]
- Barinov A, Luo L, Gasse P, et al. Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc Natl Acad Sci USA 2017 ; 114 : 2319–2324. [CrossRef] [PubMed] [Google Scholar]
- Caron G, Le Gallou S, Lamy T, et al. CXCR4 Expression Functionally Discriminates Centroblasts versus Centrocytes within Human Germinal Center B Cells. J Immunol 2009 ; 182 : 7595–7602. [CrossRef] [PubMed] [Google Scholar]
- Weber TSCell Cycle-Associated CXCR4 Expression in Germinal Center B Cells and Its Implications on Affinity Maturation. Front Immunol 2018 ; 9 : 1313. [CrossRef] [PubMed] [Google Scholar]
- Allen CDC, Ansel KM, Low C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 2004 ; 5 : 943–952. [CrossRef] [PubMed] [Google Scholar]
- Dominguez-Sola D, Kung J, Holmes AB, et al. The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program. Immunity 2015 ; 43 : 1064–1074. [CrossRef] [PubMed] [Google Scholar]
- Sander S, Chu VT, Yasuda T, et al. PI3 Kinase and FOXO1 Transcription Factor Activity Differentially Control B Cells in the Germinal Center Light and Dark Zones. Immunity 2015 ; 43 : 1075–1086. [CrossRef] [PubMed] [Google Scholar]
- Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004 ; 104 : 444–452. [CrossRef] [PubMed] [Google Scholar]
- Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine 2010 ; 28 : 4837–4841. [CrossRef] [PubMed] [Google Scholar]
- Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood 2012 ; 119 : 5722–5730. [CrossRef] [PubMed] [Google Scholar]
- Biajoux V, Natt J, Freitas C, et al. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization. Cell Rep 2016 ; 17 : 193–205. [CrossRef] [PubMed] [Google Scholar]
- Slifka MK, Antia R, Whitmire JK, et al. Humoral Immunity Due to Long-Lived Plasma Cells. Immunity 1998 ; 8 : 363–372. [CrossRef] [PubMed] [Google Scholar]
- Hargreaves DC, Hyman PL, Lu TT, et al. A Coordinated Change in Chemokine Responsiveness Guides Plasma Cell Movements. J Exp Med 2001 ; 194 : 45–56. [CrossRef] [PubMed] [Google Scholar]
- Hauser AE, Debes GF, Arce S, et al. Chemotactic Responsiveness Toward Ligands for CXCR3 and CXCR4 Is Regulated on Plasma Blasts During the Time Course of a Memory Immune Response. J Immunol 2002 ; 169 : 1277–1282. [CrossRef] [PubMed] [Google Scholar]
- Tokoyoda K, Egawa T, Sugiyama T, et al. Cellular Niches Controlling B Lymphocyte Behavior within Bone Marrow during Development. Immunity 2004 ; 20 : 707–718. [CrossRef] [PubMed] [Google Scholar]
- Alouche N, Bonaud A, Rondeau V, et al. Hematologic disorder-associated Cxcr4 gain-of-function mutation leads to uncontrolled extrafollicular immune response. Blood 2021; 137 : 3050–63. [CrossRef] [PubMed] [Google Scholar]
- Kay JE, Kromwel L, Doe SEA, et al. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 1991 ; 72 : 544–549. [PubMed] [Google Scholar]
- Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immun 2012; 3. [Google Scholar]
- Belnoue E, Pihlgren M, McGaha TL, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008 ; 111 : 2755–2764. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.