Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1125 - 1132
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021209
Publié en ligne 20 décembre 2021
  1. Alberti G, Zimmet P. The IDF consensus worldwide definition of the METABOLIC SYNDROME. International Diabetes Federation 2006. [Google Scholar]
  2. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : 213–228. [CrossRef] [PubMed] [Google Scholar]
  3. Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017 ; 14 : 259–272. [CrossRef] [PubMed] [Google Scholar]
  4. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008 ; 173 : 1210–1219. [CrossRef] [PubMed] [Google Scholar]
  5. Ali S, Malloci M, Safiedeen Z, et al. LPS-enriched small extracellular vesicles from metabolic syndrome patients trigger endothelial dysfunction by activation of TLR4. Metabolism 2021 : 154727. [CrossRef] [PubMed] [Google Scholar]
  6. Amosse J, Durcin M, Malloci M, et al. Phenotyping of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of Macrophage Migration Inhibitory Factor. Mol Metab 2018 ; 18 : 134–142. [CrossRef] [PubMed] [Google Scholar]
  7. Li S, Wei J, Zhang C, et al. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: a Systematic Review and Meta-Analysis. Cell Physiol Biochem 2016 ; 39 : 2439–2450. [CrossRef] [PubMed] [Google Scholar]
  8. Srinivas AN, Suresh D, Santhekadur PK, et al. Extracellular Vesicles as Inflammatory Drivers in NAFLD. Front Immunol 2020; 11 : 627424. [Google Scholar]
  9. Le Lay S, Rome S, Loyer X, Nieto L. Adipocyte-derived extracellular vesicles in health and diseases: Nano-packages with vast biological properties. FASEB BioAdvances 2021; 00 : 1–13. [Google Scholar]
  10. Freeman DW, Noren Hooten N, Eitan E, et al. Altered Extracellular Vesicle Concentration, Cargo and Function in Diabetes Mellitus. Diabetes 2018 ; 67 : 2377–2388. [CrossRef] [PubMed] [Google Scholar]
  11. Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001 ; 104 : 2649–2652. [CrossRef] [PubMed] [Google Scholar]
  12. Sarlon-Bartoli G, Bennis Y, Lacroix R, et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013 ; 62 : 1436–1441. [CrossRef] [PubMed] [Google Scholar]
  13. Sinning JM, Losch J, Walenta K, et al. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 2011 ; 2011 : 322034–2041. [CrossRef] [PubMed] [Google Scholar]
  14. Oshikawa S, Sonoda H, Ikeda M. Aquaporins in Urinary Extracellular Vesicles (Exosomes). Int J Mol Sci 2016 : 17 [Google Scholar]
  15. Santamaria-Martos F, Benitez ID, Latorre J, et al. Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clin Nutr 2020; 39 : 1067–76. [CrossRef] [PubMed] [Google Scholar]
  16. Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 2017 ; 6 : 1305677. [CrossRef] [PubMed] [Google Scholar]
  17. Rome S, Blandin A, Le Lay S. Adipocyte-Derived Extracellular Vesicles: State of the Art. Int J Mol Sci 2021; 22. [PubMed] [Google Scholar]
  18. Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009 ; 58 : 2498–2505. [CrossRef] [PubMed] [Google Scholar]
  19. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell 2017 ; 171 : 372–84e12. [CrossRef] [PubMed] [Google Scholar]
  20. Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring) 2014 ; 22 : 1296–1308. [Google Scholar]
  21. Aswad H, Forterre A, Wiklander OP, et al. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 2014 ; 57 : 2155–2164. [CrossRef] [PubMed] [Google Scholar]
  22. Perdomo L, Vidal-Gomez X, Soleti R, et al. Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circ Res 2020; 127 : 747–60. [CrossRef] [PubMed] [Google Scholar]
  23. Jansen F, Yang X, Franklin BS, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res; 98 : 94–106. [Google Scholar]
  24. Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 2011 ; 31 : 1898–1907. [CrossRef] [PubMed] [Google Scholar]
  25. Hosseinkhani B, Kuypers S, van den Akker NMS, et al. Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells. Front Immunol 2018 ; 9 : 1789. [CrossRef] [PubMed] [Google Scholar]
  26. Wadey RM, Connolly KD, Mathew D, et al. Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 2019 ; 283 : 19–27. [CrossRef] [PubMed] [Google Scholar]
  27. Gan L, Xie D, Liu J, et al. Small Extracellular Microvesicles Mediated Pathological Communications Between Dysfunctional Adipocytes and Cardiomyocytes as a Novel Mechanism Exacerbating Ischemia/Reperfusion Injury in Diabetic Mice. Circulation 2020; 141 : 968–83. [CrossRef] [PubMed] [Google Scholar]
  28. Ibrahim SH, Hirsova P, Tomita K, et al. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 2016 ; 63 : 731–744. [CrossRef] [PubMed] [Google Scholar]
  29. Kakazu E, Mauer AS, Yin M, Malhi H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J Lipid Res 2016 ; 57 : 233–245. [CrossRef] [PubMed] [Google Scholar]
  30. Liu XL, Pan Q, Cao HX, et al. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192–5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020; 72 : 454–69. [CrossRef] [PubMed] [Google Scholar]
  31. Povero D, Eguchi A, Niesman IR, et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal 2013; 6 : ra88. [CrossRef] [PubMed] [Google Scholar]
  32. Povero D, Panera N, Eguchi A, et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-gamma. Cell Mol Gastroenterol Hepatol 2015 ; 1 : 646–63e4. [CrossRef] [PubMed] [Google Scholar]
  33. Jiang F, Chen Q, Wang W, et al. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1. J Hepatol 2020; 72 : 156–66. [CrossRef] [PubMed] [Google Scholar]
  34. Zhao Y, Zhao MF, Jiang S, et al. Liver governs adipose remodelling via extracellular vesicles in response to lipid overload. Nat Commun 2020; 11 : 719. [CrossRef] [PubMed] [Google Scholar]
  35. Al Amir Dache Z, Otandault A, Tanos R, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 2020; 34 : 3616–30. [CrossRef] [PubMed] [Google Scholar]
  36. Haraszti RA, Didiot MC, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 2016 ; 5 : 32570. [CrossRef] [PubMed] [Google Scholar]
  37. D’Acunzo P, Perez-Gonzalez R, Kim Y, et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci Adv 2021; 7. [Google Scholar]
  38. Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016 ; 126 : 859–864. [CrossRef] [PubMed] [Google Scholar]
  39. Puhm F, Afonyushkin T, Resch U, et al. Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells. Circ Res 2019 ; 125 : 43–52. [CrossRef] [PubMed] [Google Scholar]
  40. Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, et al. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183 : 94–109 e23. [CrossRef] [PubMed] [Google Scholar]
  41. Brestoff JR, Wilen CB, Moley JR, et al. Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metab 2021; 33 : 270–82 e8. [CrossRef] [PubMed] [Google Scholar]
  42. Crewe C, Funcke JB, Li S, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 2021; 17 : S1550–4131(21)00365-X. [Google Scholar]
  43. Zhao M, Liu S, Wang C, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Mitochondrial Damage and Inflammation by Stabilizing Mitochondrial DNA. ACS Nano 2021; 15 : 1519–38. [CrossRef] [PubMed] [Google Scholar]
  44. Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-Rich Extracellular Vesicles From Autologous Stem Cell-Derived Cardiomyocytes Restore Energetics of Ischemic Myocardium. J Am Coll Cardiol 2021; 77 : 1073–88. [CrossRef] [PubMed] [Google Scholar]
  45. Nah G, Park SC, Kim K, et al. Type-2 Diabetics Reduces Spatial Variation of Microbiome Based on Extracellur Vesicles from Gut Microbes across Human Body. Sci Rep 2019 ; 9 : 20136. [CrossRef] [PubMed] [Google Scholar]
  46. Choi Y, Kwon Y, Kim DK, et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 2015 ; 5 : 15878. [CrossRef] [PubMed] [Google Scholar]
  47. Seyama M, Yoshida K, Yoshida K, et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Basis Dis 2020; 1866 : 165731. [CrossRef] [PubMed] [Google Scholar]
  48. Gilmore WJ, Johnston EL, Zavan L, et al. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol Immunol 2021; 134 : 72–85. [CrossRef] [PubMed] [Google Scholar]
  49. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016 ; 65 : 426–436. [CrossRef] [PubMed] [Google Scholar]
  50. Ashrafian F, Shahriary A, Behrouzi A, et al. Akkermansia muciniphila-Derived Extracellular Vesicles as a Mucosal Delivery Vector for Amelioration of Obesity in Mice. Front Microbiol 2019 ; 10 : 2155. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.