Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 6-7, Juin-Juillet 2021
|
|
---|---|---|
Page(s) | 593 - 600 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2021095 | |
Publié en ligne | 28 juin 2021 |
- Camilleri M. Intestinal secretory mechanisms in irritable bowel syndrome-diarrhea. Clin Gastroenterol Hepatol 2015; 13 : 1051–7; quiz e61–2. [CrossRef] [PubMed] [Google Scholar]
- Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol 2017 ; 19 : 1366–1378. [CrossRef] [PubMed] [Google Scholar]
- Marteau P, Doré J. Le microbiote intestinal, un organe à part entière. Paris: John Libbey Eurotext, 2017, 338 p [Google Scholar]
- Normand S, Secher T, Chamaillard M. La dysbiose, une nouvelle entité en médecine ?. Med Sci (Paris) 2013 ; 29 : 586–589. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Enck P, Aziz Q, Barbara G, et al. Irritable bowel syndrome. Nat Rev Dis Primers 2016 ; 2 : 16014. [CrossRef] [PubMed] [Google Scholar]
- Lacy BE, Patel NK. Rome criteria and a diagnostic approach to irritable bowel syndrome. J Clin Med 2017; 6. [Google Scholar]
- Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome. Clin Epidemiol 2014 ; 6 : 71–80. [PubMed] [Google Scholar]
- Kim YS, Kim N. Sex-gender differences in irritable bowel syndrome. J Neurogastroenterol Motil 2018 ; 24 : 544–558. [CrossRef] [PubMed] [Google Scholar]
- Kamm MA, Farthing MJ, Lennard-Jones JE. Bowel function and transit rate during the menstrual cycle. Gut 1989 ; 30 : 605–608. [CrossRef] [PubMed] [Google Scholar]
- Van der Giessen J, van der Woude CJ, Peppelenbosch MP, Fuhler GM. A direct effect of sex hormones on epithelial barrier function in inflammatory bowel disease models. Cells 2019; 8. [Google Scholar]
- Pietrzak A, Skrzydlo-Radomanska B, Mulak A, et al. Guidelines on the management of irritable bowel syndrome: in memory of Professor Witold Bartnik. Prz Gastroenterol 2018 ; 13 : 259–288. [Google Scholar]
- Chang L, Heitkemper MM, Wiley JW, Camilleri M. 2015 James W. Freston single topic conference: a renaissance in the understanding and management of irritable bowel syndrome. Gastroenterology 2016 ; 151 : e1–e8. [CrossRef] [PubMed] [Google Scholar]
- Delvaux M. Role of visceral sensitivity in the pathophysiology of irritable bowel syndrome. Gut 2002 ; 51(suppl 1): i67–i71. [CrossRef] [PubMed] [Google Scholar]
- Zhou Q, Verne GN. New insights into visceral hypersensitivity: clinical implications in IBS. Nat Rev Gastroenterol Hepatol 2011 ; 8 : 349–355. [CrossRef] [PubMed] [Google Scholar]
- Camilleri M. Physiological underpinnings of irritable bowel syndrome: neurohormonal mechanisms. J Physiol 2014 ; 592 : 2967–2980. [CrossRef] [PubMed] [Google Scholar]
- Turcotte JF, Kao D, Mah SJ, et al. Breaks in the wall: increased gaps in the intestinal epithelium of irritable bowel syndrome patients identified by confocal laser endomicroscopy (with videos). Gastrointest Endosc 2013 ; 77 : 624–630. [CrossRef] [PubMed] [Google Scholar]
- Martinez C, Rodino-Janeiro BK, Lobo B, et al. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017 ; 66 : 1537–1538. [CrossRef] [PubMed] [Google Scholar]
- Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature 2007 ; 449 : 804–810. [CrossRef] [PubMed] [Google Scholar]
- Matsumoto H, Shiotani A, Katsumata R, et al. Mucosa-associated microbiota in patients with irritable bowel syndrome: a comparison of subtypes. Digestion 2021; 102 : 49–56. [CrossRef] [PubMed] [Google Scholar]
- Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24 : 521–30-e248. [CrossRef] [PubMed] [Google Scholar]
- Maharshak N, Ringel Y, Katibian D, et al. Fecal and mucosa-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Dig Dis Sci 2018 ; 63 : 1890–1899. [CrossRef] [PubMed] [Google Scholar]
- Zhuang X, Tian Z, Li L, et al. Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front Microbiol 2018 ; 9 : 1600. [CrossRef] [PubMed] [Google Scholar]
- De Palma G, Lynch MD, Lu J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 2017; 9 : eaaf6397. [CrossRef] [PubMed] [Google Scholar]
- Duboc H, Rainteau D, Rajca S, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24 : 513–20-e246-7. [CrossRef] [PubMed] [Google Scholar]
- Li G, Yang M, Jin Y, et al. Involvement of shared mucosal-associated microbiota in the duodenum and rectum in diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol 2018 ; 33 : 1220–1226. [CrossRef] [PubMed] [Google Scholar]
- Pozuelo M, Panda S, Santiago A, et al. Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci Rep 2015 ; 5 : 12693. [CrossRef] [PubMed] [Google Scholar]
- Gargari G, Taverniti V, Gardana C, et al. Fecal clostridiales distribution and short-chain fatty acids reflect bowel habits in irritable bowel syndrome. Environ Microbiol 2018 ; 20 : 3201–3213. [CrossRef] [PubMed] [Google Scholar]
- Peleman C, Camilleri M, Busciglio I, et al. Colonic transit and bile acid synthesis or excretion in patients with irritable bowel syndrome-diarrhea without bile acid malabsorption. Clin Gastroenterol Hepatol 2017; 15 : 720–7e1. [CrossRef] [PubMed] [Google Scholar]
- Zhan K, Zheng H, Li J, et al. Gut microbiota-bile acid crosstalk in diarrhea-irritable bowel syndrome. Biomed Res Int 2020; 2020 : 3828249. [PubMed] [Google Scholar]
- Li YJ, Li J, Dai C. The role of intestinal microbiota and mast cell in a rat model of visceral hypersensitivity. J Neurogastroenterol Motil 2020; 26 : 529–38. [CrossRef] [PubMed] [Google Scholar]
- Gu X, Song LJ, Li LX, et al. Fusobacterium nucleatum causes microbial dysbiosis and exacerbates visceral hypersensitivity in a colonization-independent manner. Front Microbiol 2020; 11 : 1281. [CrossRef] [PubMed] [Google Scholar]
- Bonfrate L, Di Palo DM, Celano G, et al. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients. Eur J Clin Invest 2020; 50 : e13201. [CrossRef] [PubMed] [Google Scholar]
- Laval L, Martin R, Natividad JN, et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2–165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015 ; 6 : 1–9. [CrossRef] [PubMed] [Google Scholar]
- Lopez-Siles M, Martinez-Medina M, Busquets D, et al. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol 2014 ; 304 : 464–475. [CrossRef] [PubMed] [Google Scholar]
- Salvo-Romero E, Martinez C, Lobo B, et al. Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in diarrhea-predominant irritable bowel syndrome. Sci Rep 2020; 10 : 20706. [CrossRef] [PubMed] [Google Scholar]
- Chong PP, Chin VK, Looi CY, et al. The microbiome and irritable bowel syndrome - a review on the pathophysiology, current research and future therapy. Front Microbiol 2019 ; 10 : 1136. [CrossRef] [PubMed] [Google Scholar]
- Shukla R, Ghoshal U, Ranjan P, Ghoshal UC. Expression of Toll-like receptors, pro-, and anti-inflammatory cytokines in relation to gut microbiota in irritable bowel syndrome: the evidence for its micro-organic basis. J Neurogastroenterol Motil 2018 ; 24 : 628–642. [CrossRef] [PubMed] [Google Scholar]
- Zhen Y, Chu C, Zhou S, et al. Imbalance of tumor necrosis factor-alpha, interleukin-8 and interleukin-10 production evokes barrier dysfunction, severe abdominal symptoms and psychological disorders in patients with irritable bowel syndrome-associated diarrhea. Mol Med Rep 2015 ; 12 : 5239–5245. [CrossRef] [PubMed] [Google Scholar]
- Lacy B, Ayyagari R, Guerin A, et al. Factors associated with more frequent diagnostic tests and procedures in patients with irritable bowel syndrome. Therap Adv Gastroenterol 2019 ; 12 : 1756284818818326. [PubMed] [Google Scholar]
- Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011 ; 364 : 22–32. [Google Scholar]
- Staudacher HM, Whelan K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017 ; 66 : 1517–1527. [CrossRef] [PubMed] [Google Scholar]
- Preston K, Krumian R, Hattner J, et al. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R and Lactobacillus rhamnosus CLR2 improve quality-of-life and IBS symptoms: a double-blind, randomised, placebo-controlled study. Benef Microbes 2018 ; 9 : 697–706. [CrossRef] [PubMed] [Google Scholar]
- Kim HJ, Camilleri M, McKinzie S, et al. A randomized controlled trial of a probiotic, VSL#3, on gut transit and symptoms in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 2003 ; 17 : 895–904. [CrossRef] [PubMed] [Google Scholar]
- Johnsen PH, Hilpusch F, Cavanagh JP, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol 2018 ; 3 : 17–24. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.