Free Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1153 - 1159
Section Bioproduction
DOI https://doi.org/10.1051/medsci/2019219
Published online 06 January 2020
  1. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 ; 256: 495–497. [Google Scholar]
  2. Jones D, Kroos N, Anema R, et al. High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 2003 ; 19: 163–168. [CrossRef] [PubMed] [Google Scholar]
  3. Tsuruta LR, Lopes Dos Santos M, Yeda FP, et al. Genetic analyses of Per. C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016 ; 100: 10031–10041. [CrossRef] [PubMed] [Google Scholar]
  4. Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 2015: 1–13. [Google Scholar]
  5. Sibéril S, de Romeuf C, Bihoreau N, et al. Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory Fc gamma R functions. Clin Immunol 2006 ; 118: 170–179. [CrossRef] [PubMed] [Google Scholar]
  6. Berdichevsky M, d’Anjou M, Mallem MR, et al. Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 2011; 155: 217–24. [CrossRef] [PubMed] [Google Scholar]
  7. Love KR, Dalvie NC, Love JC. The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018 ; 53: 50–58. [Google Scholar]
  8. Hanania U, Ariel T, Tekoah Y, et al. Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 2017 ; 15: 1120–1129. [CrossRef] [PubMed] [Google Scholar]
  9. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 2004 ; 22: 1393–1398. [CrossRef] [PubMed] [Google Scholar]
  10. Li F, Vijayasankaran N, Shen AY, et al. Cell culture processes for monoclonal antibody production. MAbs 2010 ; 2: 466–479. [CrossRef] [PubMed] [Google Scholar]
  11. Saunders F, Sweeney B, Antoniou MN, et al. Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015 ; 10: e0120096. [CrossRef] [PubMed] [Google Scholar]
  12. Zhang L, Inniss MC, Han S, et al. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 2015 ; 31: 1645–1656. [CrossRef] [PubMed] [Google Scholar]
  13. Hamaker NK, Lee KH. Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr Opin Chem Eng 2018 ; 22: 152–160. [CrossRef] [PubMed] [Google Scholar]
  14. Xu X, Nagarajan H, Lewis NE, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 2011 ; 29: 735–741. [CrossRef] [PubMed] [Google Scholar]
  15. Rupp O, MacDonald ML, Li S, et al. A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnol Bioeng 2018 ; 115: 2087–2100. [CrossRef] [PubMed] [Google Scholar]
  16. Stolfa G, Smonskey MT, Boniface R, et al. CHO-omics review: the impact of current and emerging technologies on chinese hamster ovary based bioproduction. Biotechnol J 2018 ; 13: e1700227. [Google Scholar]
  17. Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol 2017 ; 38: 358–372. [CrossRef] [PubMed] [Google Scholar]
  18. Jefferis R.. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 2009 ; 8: 226–234. [CrossRef] [PubMed] [Google Scholar]
  19. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 2002 ; 277: 26733–26740. [CrossRef] [PubMed] [Google Scholar]
  20. Niwa R, Sakurada M, Kobayashi Y, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 2005 ; 11: 2327–2336. [CrossRef] [PubMed] [Google Scholar]
  21. Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 2009 ; 20: 700–707. [Google Scholar]
  22. Pereira NA, Chan KF, Lin PC, et al. The less-is-more in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2018 ; 10: 693–711. [CrossRef] [PubMed] [Google Scholar]
  23. Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017 ; 251: 128–140. [CrossRef] [PubMed] [Google Scholar]
  24. Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol 2010 ; 30: Suppl 1 S9–14. [CrossRef] [PubMed] [Google Scholar]
  25. Raymond C, Robotham A, Spearman M, et al. Production of alpha2,6-sialylated IgG1 in CHO cells. MAbs 2015 ; 7: 571–583. [CrossRef] [PubMed] [Google Scholar]
  26. Washburn N, Schwab I, Ortiz D, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA 2015 ; 112: E1297–E1306. [CrossRef] [Google Scholar]
  27. Shukla AA, Gottschalk U. Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 2013 ; 31: 147–154. [CrossRef] [PubMed] [Google Scholar]
  28. Frank GT. Transformation of biomanufacturing by single-use systems and technology. Curr Opin Chem Eng 2018 ; 22: 62–70. [Google Scholar]
  29. Bielser JM, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing. A critical review. Biotechnol Adv 2018 ; 36: 1328–1340. [CrossRef] [Google Scholar]
  30. Fisher AC, Kamga MH, Agarabi C, et al. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol 2019 ; 37: 253–267. [CrossRef] [PubMed] [Google Scholar]
  31. Fan L, Rizzi G, Bierilo K, et al. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog 2017 ; 33: 1456–1462. [CrossRef] [PubMed] [Google Scholar]
  32. Stuible M, van Lier F, Croughan MS, et al. Beyond preclinical research: production of CHO-derived biotherapeutics for toxicology and early-phase trials by transient gene expression or stable pools. Curr Opin Chem Eng 2018 ; 22: 145–151. [Google Scholar]
  33. Daramola O, Stevenson J, Dean G, et al. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 2014 ; 30: 132–141. [CrossRef] [PubMed] [Google Scholar]
  34. Rajendra Y, Hougland MD, Alam R, et al. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng 2015 ; 112: 977–986. [CrossRef] [PubMed] [Google Scholar]
  35. Stuible M, Burlacu A, Perret S, et al. Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in CHO-EBNA1 cells. J Biotechnol 2018 ; 281: 39–47. [CrossRef] [PubMed] [Google Scholar]
  36. Martin RW, Des Soye BJ, Kwon YC, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 2018 ; 9: 1203. [PubMed] [Google Scholar]
  37. Zawada JF, Yin G, Steiner AR, et al. Microscale to manufacturing scale-up of cell-free cytokine production: a new approach for shortening protein production development timelines. Biotechnol Bioeng 2011 ; 108: 1570–1578. [CrossRef] [PubMed] [Google Scholar]
  38. Liu Z, Mostafa SS, Shukla AA. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification. Biotechnol Appl Biochem 2015 ; 62: 37–47. [CrossRef] [PubMed] [Google Scholar]
  39. Jacquemart R, Vandersluis M, Zhao M, et al. A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J 2016 ; 14: 309–318. [CrossRef] [PubMed] [Google Scholar]
  40. Burgstaller D, Jungbauer A, Satzer P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol Bioeng 2019 ; 116: 1053–1065. [CrossRef] [PubMed] [Google Scholar]
  41. Richards DA. Exploring alternative antibody scaffolds: antibody fragments and antibody mimics for targeted drug delivery. Drug Discov Today Technol 2018 ; 30: 35–46. [CrossRef] [PubMed] [Google Scholar]
  42. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017 ; 8: 1603. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.