Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1153 - 1159
Section Bioproduction
DOI https://doi.org/10.1051/medsci/2019219
Publié en ligne 6 janvier 2020
  1. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 ; 256: 495–497. [Google Scholar]
  2. Jones D, Kroos N, Anema R, et al. High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 2003 ; 19: 163–168. [CrossRef] [PubMed] [Google Scholar]
  3. Tsuruta LR, Lopes Dos Santos M, Yeda FP, et al. Genetic analyses of Per. C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016 ; 100: 10031–10041. [CrossRef] [PubMed] [Google Scholar]
  4. Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 2015: 1–13. [Google Scholar]
  5. Sibéril S, de Romeuf C, Bihoreau N, et al. Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory Fc gamma R functions. Clin Immunol 2006 ; 118: 170–179. [CrossRef] [PubMed] [Google Scholar]
  6. Berdichevsky M, d’Anjou M, Mallem MR, et al. Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 2011; 155: 217–24. [CrossRef] [PubMed] [Google Scholar]
  7. Love KR, Dalvie NC, Love JC. The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018 ; 53: 50–58. [Google Scholar]
  8. Hanania U, Ariel T, Tekoah Y, et al. Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 2017 ; 15: 1120–1129. [CrossRef] [PubMed] [Google Scholar]
  9. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 2004 ; 22: 1393–1398. [CrossRef] [PubMed] [Google Scholar]
  10. Li F, Vijayasankaran N, Shen AY, et al. Cell culture processes for monoclonal antibody production. MAbs 2010 ; 2: 466–479. [CrossRef] [PubMed] [Google Scholar]
  11. Saunders F, Sweeney B, Antoniou MN, et al. Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015 ; 10: e0120096. [CrossRef] [PubMed] [Google Scholar]
  12. Zhang L, Inniss MC, Han S, et al. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 2015 ; 31: 1645–1656. [CrossRef] [PubMed] [Google Scholar]
  13. Hamaker NK, Lee KH. Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr Opin Chem Eng 2018 ; 22: 152–160. [CrossRef] [PubMed] [Google Scholar]
  14. Xu X, Nagarajan H, Lewis NE, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 2011 ; 29: 735–741. [CrossRef] [PubMed] [Google Scholar]
  15. Rupp O, MacDonald ML, Li S, et al. A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnol Bioeng 2018 ; 115: 2087–2100. [CrossRef] [PubMed] [Google Scholar]
  16. Stolfa G, Smonskey MT, Boniface R, et al. CHO-omics review: the impact of current and emerging technologies on chinese hamster ovary based bioproduction. Biotechnol J 2018 ; 13: e1700227. [Google Scholar]
  17. Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol 2017 ; 38: 358–372. [CrossRef] [PubMed] [Google Scholar]
  18. Jefferis R.. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 2009 ; 8: 226–234. [CrossRef] [PubMed] [Google Scholar]
  19. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 2002 ; 277: 26733–26740. [CrossRef] [PubMed] [Google Scholar]
  20. Niwa R, Sakurada M, Kobayashi Y, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 2005 ; 11: 2327–2336. [CrossRef] [PubMed] [Google Scholar]
  21. Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 2009 ; 20: 700–707. [Google Scholar]
  22. Pereira NA, Chan KF, Lin PC, et al. The less-is-more in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2018 ; 10: 693–711. [CrossRef] [PubMed] [Google Scholar]
  23. Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017 ; 251: 128–140. [CrossRef] [PubMed] [Google Scholar]
  24. Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol 2010 ; 30: Suppl 1 S9–14. [CrossRef] [PubMed] [Google Scholar]
  25. Raymond C, Robotham A, Spearman M, et al. Production of alpha2,6-sialylated IgG1 in CHO cells. MAbs 2015 ; 7: 571–583. [CrossRef] [PubMed] [Google Scholar]
  26. Washburn N, Schwab I, Ortiz D, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA 2015 ; 112: E1297–E1306. [CrossRef] [Google Scholar]
  27. Shukla AA, Gottschalk U. Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 2013 ; 31: 147–154. [CrossRef] [PubMed] [Google Scholar]
  28. Frank GT. Transformation of biomanufacturing by single-use systems and technology. Curr Opin Chem Eng 2018 ; 22: 62–70. [Google Scholar]
  29. Bielser JM, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing. A critical review. Biotechnol Adv 2018 ; 36: 1328–1340. [CrossRef] [Google Scholar]
  30. Fisher AC, Kamga MH, Agarabi C, et al. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol 2019 ; 37: 253–267. [CrossRef] [PubMed] [Google Scholar]
  31. Fan L, Rizzi G, Bierilo K, et al. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog 2017 ; 33: 1456–1462. [CrossRef] [PubMed] [Google Scholar]
  32. Stuible M, van Lier F, Croughan MS, et al. Beyond preclinical research: production of CHO-derived biotherapeutics for toxicology and early-phase trials by transient gene expression or stable pools. Curr Opin Chem Eng 2018 ; 22: 145–151. [Google Scholar]
  33. Daramola O, Stevenson J, Dean G, et al. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 2014 ; 30: 132–141. [CrossRef] [PubMed] [Google Scholar]
  34. Rajendra Y, Hougland MD, Alam R, et al. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng 2015 ; 112: 977–986. [CrossRef] [PubMed] [Google Scholar]
  35. Stuible M, Burlacu A, Perret S, et al. Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in CHO-EBNA1 cells. J Biotechnol 2018 ; 281: 39–47. [CrossRef] [PubMed] [Google Scholar]
  36. Martin RW, Des Soye BJ, Kwon YC, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat Commun 2018 ; 9: 1203. [PubMed] [Google Scholar]
  37. Zawada JF, Yin G, Steiner AR, et al. Microscale to manufacturing scale-up of cell-free cytokine production: a new approach for shortening protein production development timelines. Biotechnol Bioeng 2011 ; 108: 1570–1578. [CrossRef] [PubMed] [Google Scholar]
  38. Liu Z, Mostafa SS, Shukla AA. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification. Biotechnol Appl Biochem 2015 ; 62: 37–47. [CrossRef] [PubMed] [Google Scholar]
  39. Jacquemart R, Vandersluis M, Zhao M, et al. A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J 2016 ; 14: 309–318. [CrossRef] [PubMed] [Google Scholar]
  40. Burgstaller D, Jungbauer A, Satzer P. Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow. Biotechnol Bioeng 2019 ; 116: 1053–1065. [CrossRef] [PubMed] [Google Scholar]
  41. Richards DA. Exploring alternative antibody scaffolds: antibody fragments and antibody mimics for targeted drug delivery. Drug Discov Today Technol 2018 ; 30: 35–46. [CrossRef] [PubMed] [Google Scholar]
  42. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017 ; 8: 1603. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.