Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 1130 - 1136
Section Anticorps monoclonaux : de la complexité du passage du laboratoire à l’homme
DOI https://doi.org/10.1051/medsci/2019210
Published online 06 January 2020
  1. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin 2010 ; 49: 633–659. [Google Scholar]
  2. Dostalek M, Gardner I, Gurbaxani BM, et al. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013 ; 52: 83–124. [CrossRef] [PubMed] [Google Scholar]
  3. Ternant D, Bejan-Angoulvant T, Passot C, et al. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet 2015 ; 54: 1107–1123. [CrossRef] [PubMed] [Google Scholar]
  4. Ternant D, Karmiris K, Vermeire S, et al. Pharmacokinetics of adalimumab in Crohn’s disease. Eur J Clin Pharmacol 2015 ; 71: 1155–1157. [CrossRef] [PubMed] [Google Scholar]
  5. Kagan L, Turner MR, Balu-Iyer SV, Mager DE. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res 2012 ; 29: 490–499. [CrossRef] [PubMed] [Google Scholar]
  6. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004 ; 93: 2645–2668. [CrossRef] [PubMed] [Google Scholar]
  7. Paintaud G.. Pharmacocinétique des anticorps monoclonaux. Med Sci (Paris) 2009 ; 25: 1057–1062. [CrossRef] [Google Scholar]
  8. Passot C, Pouw MF, Mulleman D, et al. Therapeutic drug monitoring of biopharmaceuticals may benefit from pharmacokinetic and pharmacokinetic-pharmacodynamic modeling. Ther Drug Monit 2017 ; 39: 322–326. [CrossRef] [PubMed] [Google Scholar]
  9. Ternant D, Azzopardi N, Raoul W, et al. Influence of antigen mass on the pharmacokinetics of therapeutic antibodies in humans. Clin Pharmacokinet 2018 ; 2018: 018–0680. [Google Scholar]
  10. Ternant D, Paintaud G. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins. Expert Opin Biol Ther 2005 ; 5: S37–S47. [Google Scholar]
  11. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 2018; 9 h 15–32. [CrossRef] [PubMed] [Google Scholar]
  12. Yu T, Enioutina EY, Brunner HI, et al. Clinical pharmacokinetics and pharmacodynamics of biologic therapeutics for treatment of systemic lupus erythematosus. Clin Pharmacokinet 2017 ; 56: 107–125. [CrossRef] [PubMed] [Google Scholar]
  13. Gill KL, Machavaram KK, Rose RH, Chetty M. Potential sources of inter-subject variability in monoclonal antibody pharmacokinetics. Clin Pharmacokinet 2016 ; 55: 789–805. [CrossRef] [PubMed] [Google Scholar]
  14. Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses - a clinical viewpoint. Br J Clin Pharmacol 2011 ; 71: 807–814. [CrossRef] [PubMed] [Google Scholar]
  15. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol 2013 ; 2013: 14. [Google Scholar]
  16. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn 2014 ; 41: 87–107. [CrossRef] [PubMed] [Google Scholar]
  17. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol 2009 ; 5: 803–812. [CrossRef] [PubMed] [Google Scholar]
  18. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 2008 ; 35: 573–591. [CrossRef] [PubMed] [Google Scholar]
  19. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 2003 ; 348: 601–608. [Google Scholar]
  20. Radstake TR, Svenson M, Eijsbouts AM, et al. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann Rheum Dis 2009 ; 68: 1739–1745. [CrossRef] [PubMed] [Google Scholar]
  21. Ternant D, Ducourau E, Perdriger A, et al. Relationship between inflammation and infliximab pharmacokinetics in rheumatoid arthritis. Br J Clin Pharmacol 2014 ; 78: 118–128. [CrossRef] [PubMed] [Google Scholar]
  22. Thurlings RM, Teng O, Vos K, et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis 2010 ; 69: 409–412. [CrossRef] [PubMed] [Google Scholar]
  23. Kverneland AH, Enevold C, Donia M, et al. Development of anti-drug antibodies is associated with shortened survival in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 2018 ; 7: 2018. [Google Scholar]
  24. Schmidt MM, Townson SA, Andreucci AJ, et al. Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure 2013 ; 21: 1966–1978. [CrossRef] [PubMed] [Google Scholar]
  25. Lu JF, Bruno R, Eppler S, et al. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 2008 ; 62: 779–786. [CrossRef] [PubMed] [Google Scholar]
  26. Lixoft. Target-mediated drug disposition (TMDD) model library. Accessed at: http://mlxtran.lixoft.com/libraries/target-mediated-drug-disposition-tmdd-modellibrary/2017. [Google Scholar]
  27. Tout M, Casasnovas O, Meignan M, et al. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma study association report. Blood 2017 ; 129: 2616–2623. [Google Scholar]
  28. Ferri N, Bellosta S, Baldessin L, et al. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res 2016 ; 111: 592–599. [CrossRef] [PubMed] [Google Scholar]
  29. Djebli N, Martinez JM, Lohan L, et al. Target-mediated drug disposition population pharmacokinetics model of alirocumab in healthy volunteers and patients: pooled analysis of randomized phase I/II/III studies. Clin Pharmacokinet 2017 ; 56: 1155–1171. [CrossRef] [PubMed] [Google Scholar]
  30. Kuchimanchi M, Grover A, Emery MG, et al. Population pharmacokinetics and exposure-response modeling and simulation for evolocumab in healthy volunteers and patients with hypercholesterolemia. J Pharmacokinet Pharmacodyn 2018 ; 2018: 018–9592. [Google Scholar]
  31. Gibbs JP, Doshi S, Kuchimanchi M, et al. Impact of target-mediated elimination on the dose and regimen of Evolocumab, a human monoclonal antibody against proprotein convertase Subtilisin/Kexin type 9 (PCSK9). J Clin Pharmacol 2017 ; 57: 616–626. [CrossRef] [PubMed] [Google Scholar]
  32. Sun H, Van LM, Floch D, et al. Pharmacokinetics and pharmacodynamics of Canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol 2016 ; 56: 1516–1527. [CrossRef] [PubMed] [Google Scholar]
  33. Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol 2018 ; 14: 585–599. [CrossRef] [PubMed] [Google Scholar]
  34. Ternant D, Arnoult C, Pugniere M, et al. IgG1 Allotypes Influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J Immunol 2016 ; 196: 607–613. [CrossRef] [PubMed] [Google Scholar]
  35. Sachs UJ, Socher I, Braeunlich CG, et al. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology 2006 ; 119: 83–89. [CrossRef] [PubMed] [Google Scholar]
  36. Caulet M, Lecomte T, Bouche O, et al. Bevacizumab pharmacokinetics influence overall and progression-free survival in metastatic colorectal cancer patients. Clin Pharmacokinet 2016 ; 55: 1381–1394. [CrossRef] [PubMed] [Google Scholar]
  37. Passot C, Azzopardi N, Renault S, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. MAbs 2013 ; 5: 614–619. [CrossRef] [PubMed] [Google Scholar]
  38. Dall’Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664–9. [Google Scholar]
  39. Ternant D, Buchler M, Beneton M, et al. Interindividual variability in the concentration-effect relationship of antilymphocyte globulins: a possible influence of FcgammaRIIIa genetic polymorphism. Br J Clin Pharmacol 2008 ; 65: 60–68. [Google Scholar]
  40. Ternant D, Buchler M, Thibault G, et al. Influence of FcgammaRIIIA genetic polymorphism on T-lymphocyte depletion induced by rabbit antithymocyte globulins in kidney transplant patients. Pharmacogenet Genomics 2014 ; 24: 26–34. [CrossRef] [PubMed] [Google Scholar]
  41. Sharma S, Mittapalli RK, Holen KD, Xiong H. Population pharmacokinetics of ABT-806, an investigational anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in advanced solid tumor types likely to either over-express wild-type EGFR or express variant III mutant EGFR. Clin Pharmacokinet 2015 ; 54: 1071–1081. [CrossRef] [PubMed] [Google Scholar]
  42. Paintaud G, Passot C, Ternant D, et al. Rationale for therapeutic drug monitoring of biopharmaceuticals in inflammatory diseases. Ther Drug Monit 2017 ; 39: 339–343. [CrossRef] [PubMed] [Google Scholar]
  43. Azzopardi N, Lecomte T, Ternant D, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res 2011 ; 17: 6329–6337. [CrossRef] [PubMed] [Google Scholar]
  44. Pointreau Y, Azzopardi N, Ternant D, et al. Cetuximab pharmacokinetics influences overall survival in patients with head and neck cancer. Ther Drug Monit 2017 ; 38: 567–572. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.