Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Numéro 11, Novembre 2019
Page(s) 871 - 879
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019166
Publié en ligne 17 décembre 2019
  1. Legres L, Chamot C, Varna M, Janin A. The laser technology: new trends in biology and medicine. J Modern Physics 2014 : 26779. [Google Scholar]
  2. Avedisian CT, Cavicchi RE, McEuen PL, Zhou X. Nanoparticles for cancer treatment: role of heat transfer. Ann NY Acad Sci 2009 ; 1161 : 62–73. [CrossRef] [Google Scholar]
  3. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science 1996 ; 274 : 998–1001. [Google Scholar]
  4. Domazet B, Maclennan GT, Lopez-Beltran A, et al. Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 2008 ; 1 : 475–88. [PubMed] [Google Scholar]
  5. Legres LG, Janin A, Masselon C, Bertheau P. Beyond laser microdissection technology: follow the yellow brick road for cancer research. Am J Cancer Res 2014 ; 4 : 1–28. [Google Scholar]
  6. Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection. Nat Protoc 2006 ; 1 : 586–603. [CrossRef] [PubMed] [Google Scholar]
  7. Bohm M, Wieland I, Schutze K, Rubben H. Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol 1997 ; 151 : 63–7. [PubMed] [Google Scholar]
  8. Kolble K. The LEICA microdissection system: design and applications. J Mol Med (Berl) 2000 ; 78 : B24–5. [PubMed] [Google Scholar]
  9. Böhm MSC, Wieland ILN Membrane-based laser microdissection in molecular oncology. Onkologie 1999 ; 296–301. [Google Scholar]
  10. Bertheau P, Plassa LF, Lerebours F, et al. Allelic loss detection in inflammatory breast cancer: improvement with laser microdissection. Lab Invest 2001 ; 81 : 1397–402. [CrossRef] [PubMed] [Google Scholar]
  11. Verneuil L, Janin A. Cancer cutané après transplantation rénale : contribution des cellules épithéliales du rein greffé. Med Sci (Paris) 2014 ; 30 : 251–2. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Rosenberg AZ, Armani MD, Fetsch PA, et al. High-throughput microdissection for next-generation sequencing. PLoS One 2016 ; 11 : e0151775. [CrossRef] [PubMed] [Google Scholar]
  13. De Marchi T, Braakman RB, Stingl C, et al. The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies. Proteomics 2016 ; 16 : 1474–85. [CrossRef] [PubMed] [Google Scholar]
  14. Cha S, Imielinski MB, Rejtar T, et al. In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics 2010 ; 9 : 2529–44. [CrossRef] [PubMed] [Google Scholar]
  15. Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013 ; 113 : 2343–94. [CrossRef] [PubMed] [Google Scholar]
  16. Magel L, Bartels S, Lehmann U Next-generation sequencing analysis of laser-microdissected formalin-fixed and paraffin-embedded (FFPE) tissue specimens. Methods Mol Biol 2018 ; 1723 : 111–8. [CrossRef] [PubMed] [Google Scholar]
  17. Landolt L, Marti HP, Beisland C, et al. RNA extraction for RNA sequencing of archival renal tissues. Scand J Clin Lab Invest 2016 ; 76 : 426–34. [CrossRef] [PubMed] [Google Scholar]
  18. Hondius DC, Hoozemans JJM, Rozemuller AJM, et al. A Laser microdissection-liquid chromatography-tandem mass spectrometry workflow for post-mortem analysis of brain tissue. Methods Mol Biol 2018 ; 1723 : 371–83. [CrossRef] [PubMed] [Google Scholar]
  19. Rekhter MD, Chen J. Molecular analysis of complex tissues is facilitated by laser capture microdissection: critical role of upstream tissue processing. Cell Biochem Biophys 2001 ; 35 : 103–13. [CrossRef] [PubMed] [Google Scholar]
  20. Drummond ES, Nayak S, Ueberheide B, Wisniewski T. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci Rep 2015 ; 5 : 15456. [CrossRef] [PubMed] [Google Scholar]
  21. Laurent FX, Vibrac G, Rubio A, et al. Les nouvelles technologies d’analyses ADN au service des enquêtes judiciaires. Med Sci (Paris) 2017 ; 33 : 971–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA fingerprints. Nature 1985 ; 318 : 577–9. [Google Scholar]
  23. Murray C, McAlister C, Elliott K. Identification and isolation of male cells using fluorescence in situ hybridisation and laser microdissection, for use in the investigation of sexual assault. Forensic Sci Int Genet 2007 ; 1 : 247–52. [CrossRef] [PubMed] [Google Scholar]
  24. Elliott K, Hill DS, Lambert C, et al. Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci Int 2003 ; 137 : 28–36. [CrossRef] [PubMed] [Google Scholar]
  25. Di Martino D, Giuffre G, Staiti N, et al. Single sperm cell isolation by laser microdissection. Forensic Sci Int 2004 ; 146 (suppl) : S151–3. [CrossRef] [PubMed] [Google Scholar]
  26. Di Martino D, Giuffre G, Staiti N, et al. Laser microdissection and DNA typing of cells from single hair follicles. Forensic Sci Int 2004 ; 146 (suppl) : S155–7. [CrossRef] [PubMed] [Google Scholar]
  27. Bauer M, Thalheimer A, Patzelt D. Paternity testing after pregnancy termination using laser microdissection of chorionic villi. Int J Legal Med 2002 ; 116 : 39–42. [CrossRef] [PubMed] [Google Scholar]
  28. Costa S, Correia-de-Sa P, Porto MJ, Caine L. The use of laser microdissection in forensic sexual assault casework: Pros and cons compared to standard methods. J Forensic Sci 2017 ; 62 : 998–1006. [CrossRef] [PubMed] [Google Scholar]
  29. Anslinger K, Bayer B, Mack B, Eisenmenger W. Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling. Int J Legal Med 2007 ; 121 : 54–6. [CrossRef] [PubMed] [Google Scholar]
  30. Miller KW, Old J, Fischer BR, et al. Developmental validation of the SPERM HY-LITER™ kit for the identification of human spermatozoa in forensic samples. J Forensic Sci 2011 ; 56 : 853–65. [CrossRef] [PubMed] [Google Scholar]
  31. Vandewoestyne M, Van Hoofstat D, Van Nieuwerburgh F, Deforce D. Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med 2009 ; 123 : 441–7. [CrossRef] [PubMed] [Google Scholar]
  32. Lee CY, Wong E, Richter DE, Menge AC. Monoclonal antibodies to human sperm antigens–II. J Reprod Immunol 1984 ; 6 : 227–38. [CrossRef] [PubMed] [Google Scholar]
  33. Burgemeister R. New aspects of laser microdissection in research and routine. J Histochem Cytochem 2005 ; 53 : 409–12. [CrossRef] [PubMed] [Google Scholar]
  34. Vandewoestyne M, Van Hoofstat D, Van Nieuwerburgh F, Deforce D. Automatic detection of spermatozoa for laser capture microdissection. Int J Legal Med 2009 ; 123 : 169–75. [CrossRef] [PubMed] [Google Scholar]
  35. Vogel A, Horneffer V, Lorenz K, et al. Principles of laser microdissection and catapulting of histologic specimens and live cells. Methods Cell Biol 2007 ; 82 : 153–205. [Google Scholar]
  36. Rousselle P. Laminine 5, migration cellulaire et cancer. Med Sci (Paris) 2002 ; 18 : 989–94. [EDP Sciences] [Google Scholar]
  37. Bouchard R, Chong T, Pugazhenthi S. Laser capture microdissection of neurons from differentiated human neuroprogenitor cells in culture. J Vis Exp 2013 : e50487. [Google Scholar]
  38. Stich M, Thalhammer S, Burgemeister R, et al. Live cell catapulting and recultivation. Pathol Res Pract 2003 ; 199 : 405–9. [CrossRef] [PubMed] [Google Scholar]
  39. Terstegge S, Rath BH, Laufenberg I, et al. Laser-assisted selection and passaging of human pluripotent stem cell colonies. J Biotechnol 2009 ; 143 : 224–30. [CrossRef] [PubMed] [Google Scholar]
  40. Podgorny OV. Live cell isolation by laser microdissection with gravity transfer. J Biomed Opt 2013 ; 18 : 55002. [CrossRef] [PubMed] [Google Scholar]
  41. Hood BL, Grahovac J, Flint MS, et al. Proteomic analysis of laser microdissected melanoma cells from skin organ cultures. J Proteome Res 2010 ; 9 : 3656–63. [PubMed] [Google Scholar]
  42. Mustafa A, Cenayko C, Mitry RR, Quaglia A. Laser microdissection microscopy: application to cell culture. Methods Mol Biol 2012 ; 806 : 385–92. [CrossRef] [PubMed] [Google Scholar]
  43. Funel N, Giovannetti E, Del Chiaro M, et al. Laser microdissection and primary cell cultures improve pharmacogenetic analysis in pancreatic adenocarcinoma. Lab Invest 2008 ; 88 : 773–84. [CrossRef] [PubMed] [Google Scholar]
  44. Gousset K, Gordon A, Kumar Kannan S, Tovar J. A novel microproteomic approach using laser capture microdissection to study cellular protrusions. Int J Mol Sci 2019 ; 20 : 1172. [Google Scholar]
  45. Creighton HB, McClintock B. A Correlation of cytological and genetical crossing-over in zea mays. Proc Natl Acad Sci USA 1931 ; 17 : 492–7. [CrossRef] [Google Scholar]
  46. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973 ; 243 : 290–3. [Google Scholar]
  47. Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 2008 ; 6 : 339–48. [CrossRef] [PubMed] [Google Scholar]
  48. Scalenghe F, Turco E, Edström JE, et al. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 1981 ; 82 : 205–16. [Google Scholar]
  49. Lüdecke HJ, Senger G, Claussen U, Horsthemke B. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 1989 ; 338 : 348–50. [Google Scholar]
  50. Telenius H, Carter NP, Bebb CE, et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 1992 ; 13 : 718–25. [CrossRef] [PubMed] [Google Scholar]
  51. Deng HX, Yoshiura K, Dirks RW, et al. Chromosome-band-specific painting: chromosome in situ suppression hybridization using PCR products from a microdissected chromosome band as a probe pool. Hum Genet 1992 ; 89 : 13–7. [CrossRef] [PubMed] [Google Scholar]
  52. Magenis RE, Gusella J, Weliky K, et al. Huntington disease-linked restriction fragment length polymorphism localized within band p16.1 of chromosome 4 by in situ hybridization. Am J Hum Genet 1986 ; 39 : 383–91. [Google Scholar]
  53. Tangrea MA, Chuaqui RF, Gillespie JW, et al. Expression microdissection: operator-independent retrieval of cells for molecular profiling. Diagn Mol Pathol 2004 ; 13 : 207–12. [CrossRef] [PubMed] [Google Scholar]
  54. Kumar B, Rosenberg AZ, Choi SM, et al. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci Rep 2018 ; 8 : 7189. [CrossRef] [PubMed] [Google Scholar]
  55. Brasko C, Smith K, Molnar C, et al. Intelligent image-based in situ single-cell isolation. Nat Commun 2018 ; 9 : 226. [CrossRef] [PubMed] [Google Scholar]
  56. Gautam V, Sarkar AK. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 2015 ; 57 : 299–308. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.