Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 1, Janvier 2019
Page(s) 39 - 45
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018311
Publié en ligne 23 janvier 2019
  1. Brunet M, Guy F, Pilbeam D, et al. A new hominid from the upper Miocene of Chad. Central Africa. Nature 2002 ; 418 :145–151. [Google Scholar]
  2. Hublin JJ, Ben-Ncer A, Bailey SE, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017 ; 546 :289. [CrossRef] [PubMed] [Google Scholar]
  3. The Genomes Project C. An integrated map of genetic variation from 1,092 human genomes. Nature 2012 ; 491 :56. [CrossRef] [PubMed] [Google Scholar]
  4. The Chimpanzee S, Analysis C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437 :69. [CrossRef] [PubMed] [Google Scholar]
  5. Prüfer K, Munch K, Hellmann I, et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 2012 ; 486 :527. [CrossRef] [PubMed] [Google Scholar]
  6. Scally A, Dutheil JY, Hillier LW, et al. Insights into hominid evolution from the gorilla genome sequence. Nature 2012 ; 483 :169. [CrossRef] [PubMed] [Google Scholar]
  7. Prüfer K, de Filippo C, Grote S, et al. A high-coverage Neandertal genome from Vindija cave in Croatia. Science 2017 ; 358 :655–658. [Google Scholar]
  8. Slon V, Hopfe C, Weiß CL, et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 2017 ; 356 :605–608. [Google Scholar]
  9. Enard W, Przeworski M, Fisher SE, et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 2002 ; 418 :869–872. [CrossRef] [PubMed] [Google Scholar]
  10. Enard W, Gehre S, Hammerschmidt K, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 2009 ; 137 :961–971. [CrossRef] [PubMed] [Google Scholar]
  11. Maricic T, Günther V, Georgiev O, et al. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 2013 ; 30 :844–852. [Google Scholar]
  12. Evans PD, Anderson JR, Vallender EJ, et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 2004 ; 13 :489–494. [CrossRef] [PubMed] [Google Scholar]
  13. Pääbo S.. The human condition: a molecular approach. Cell 2014 ; 157 :216–226. [CrossRef] [PubMed] [Google Scholar]
  14. Li JZ, Absher DM, Tang H, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 2008 ; 319 :1100–1104. [Google Scholar]
  15. Gravel S, Henn BM, Gutenkunst RN, et al. Demographic history and rare allele sharing among human populations. Proc Natl Acad Sci USA 2011 ; 108 :11983–11988. [CrossRef] [Google Scholar]
  16. Henn BM, Cavalli-Sforza LL, Feldman MW. The great human expansion. Proc Natl Acad Sci USA 2012 ; 109 :17758–17764. [CrossRef] [Google Scholar]
  17. Stringer C.. The origin and evolution of Homo sapiens. Philos Trans R Soc Lond B Biol Sci 2016 ; 371 : [Google Scholar]
  18. Stringer C, Galway-Witham J. On the origin of our species. Nature 2017 ; 546 :212. [CrossRef] [PubMed] [Google Scholar]
  19. Hershkovitz I, Weber GW, Quam R, et al. The earliest modern humans outside Africa. Science 2018 ; 359 :456–459. [Google Scholar]
  20. Bae CJ, Douka K, Petraglia MD. On the origin of modern humans: Asian perspectives. Science 2017 ; 358. [Google Scholar]
  21. Green RE, Krause J, Briggs AW, et al. A draft sequence of the neandertal genome. Science 2010 ; 328 :710–722. [Google Scholar]
  22. Prufer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai mountains. Nature 2014 ; 505 :43–49. [CrossRef] [PubMed] [Google Scholar]
  23. Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic denisovan individual. Science 2012 ; 338 :222–226. [Google Scholar]
  24. Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova cave in Siberia. Nature 2010 ; 468 :1053–1060. [CrossRef] [PubMed] [Google Scholar]
  25. Vernot B, Akey JM. Resurrecting surviving neandertal lineages from modern human genomes. Science 2014 ; 343 :1017–1021. [Google Scholar]
  26. Slatkin M, Racimo F. Ancient DNA and human history. Proc Natl Acad Sci USA 2016 ; 113 :6380–6387. [CrossRef] [Google Scholar]
  27. Fu Q, Hajdinjak M, Moldovan OT, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 2015 ; 524 :216. [CrossRef] [PubMed] [Google Scholar]
  28. Sankararaman S, Patterson N, Li H, et al. The date of interbreeding between neandertals and modern humans. PLoS Genet 2012 ; 8 :e1002947. [Google Scholar]
  29. Nielsen R, Hellmann I, Hubisz M, et al. Recent and ongoing selection in the human genome. Nat Rev Genet 2007 ; 8 :857. [CrossRef] [PubMed] [Google Scholar]
  30. Bersaglieri T, Sabeti PC, Patterson N, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 2004 ; 74 :1111–1120. [Google Scholar]
  31. Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010 ; 329 :75–78. [Google Scholar]
  32. Huerta-Sánchez E, Asan Jin X, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 2014 ; 512 :194. [CrossRef] [PubMed] [Google Scholar]
  33. Dannemann M, Andrés Aida M, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am J Hum Genet 2016 ; 98 :22–33. [Google Scholar]
  34. Abi-Rached L, Jobin MJ, Kulkarni S, et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 2011 ; 334 :89–94. [Google Scholar]
  35. Simonti CN, Vernot B, Bastarache L, et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 2016 ; 351 :737–741. [Google Scholar]
  36. Jordan B.. Néandertal et Homo sapiens: to meet, or not to meet?. Med Sci (Paris) 2012 ; 28 :1129–1132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Deschamps M, Quintana-Murci L. Immunité innée et maladies chez l’homme. Med Sci (Paris) 2016 ; 32 :1079–1086. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.