Free Access
Issue
Med Sci (Paris)
Volume 33, Number 11, Novembre 2017
Page(s) 979 - 983
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173311015
Published online 04 December 2017
  1. Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011 ; 9 : 355–361. [CrossRef] [PubMed] [Google Scholar]
  2. Sticher L, Mauch-Mani B, Metraux JP. Systemic acquired resistance. Annu Rev Phytopathol 1997 ; 35 : 235–270. [CrossRef] [PubMed] [Google Scholar]
  3. Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol 2004 ; 42 : 185–209. [CrossRef] [PubMed] [Google Scholar]
  4. Kurtz J, Franz K. Innate defence: evidence for memory in invertebrate immunity. Nature 2003 ; 425 : 37–38. [CrossRef] [PubMed] [Google Scholar]
  5. Little TJ, O’Connor B, Colegrave N, et al. Maternal transfer of strain-specific immunity in an invertebrate. Curr Biol 2003 ; 13 : 489–492. [CrossRef] [PubMed] [Google Scholar]
  6. Sadd BM, Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 2006 ; 16 : 1206–1210. [CrossRef] [PubMed] [Google Scholar]
  7. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 2007 ; 3 : e26. [CrossRef] [PubMed] [Google Scholar]
  8. Ostuni R, Piccolo V, Barozzi I, et al. Latent enhancers activated by stimulation in differentiated cells. Cell 2013 ; 152 : 157–171. [CrossRef] [PubMed] [Google Scholar]
  9. Bistoni F, Vecchiarelli A, Cenci E, et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect Immun 1986 ; 51 : 668–674. [PubMed] [Google Scholar]
  10. Bistoni F, Verducci G, Perito S, et al. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. J Med Vet Mycol 1988 ; 26 : 285–299. [CrossRef] [PubMed] [Google Scholar]
  11. Vecchiarelli A, Cenci E, Puliti M, et al. Protective immunity induced by low-virulence Candida albicans: cytokine production in the development of the anti-infectious state. Cell Immunol 1989 ; 124 : 334–344. [Google Scholar]
  12. Quintin J, Saeed S, Martens JH, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 2012 ; 12 : 223–232. [CrossRef] [PubMed] [Google Scholar]
  13. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 2012 ; 109 : 17537–17542. [CrossRef] [Google Scholar]
  14. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009 ; 457 : 557–561. [CrossRef] [PubMed] [Google Scholar]
  15. Polycarpou A, Holland MJ, Karageorgiou I, et al. Mycobacterium leprae activates Toll-like receptor-4 signaling and expression on macrophages depending on previous bacillus Calmette-Guerin vaccination. Front Cell Infect Microbiol 2016 ; 6 : 72. [CrossRef] [PubMed] [Google Scholar]
  16. Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 2014 ; 6 : 152–158. [CrossRef] [PubMed] [Google Scholar]
  17. Kumagai Y, Akira S. Identification and functions of pattern-recognition receptors. J Allergy Clin Immunol 2010 ; 125 : 985–992. [CrossRef] [PubMed] [Google Scholar]
  18. Quintin J, Cheng SC, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol 2014 ; 29 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  19. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010 ; 11 : 285–296. [CrossRef] [PubMed] [Google Scholar]
  20. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013 ; 493 : 346–355. [CrossRef] [PubMed] [Google Scholar]
  21. Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol 2012 ; 227 : 3169–3177. [Google Scholar]
  22. Liu TF, Yoza BK, El Gazzar M, et al. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 2011 ; 286 : 9856–9864. [CrossRef] [PubMed] [Google Scholar]
  23. Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem 2012 ; 287 : 25758–25769. [CrossRef] [PubMed] [Google Scholar]
  24. Hoffmann JA. The immune response of Drosophila. Nature 2003 ; 426 : 33–38. [CrossRef] [PubMed] [Google Scholar]
  25. Hildemann WH, Johnson IS, Jokiel PL. Immunocompetence in the lowest metazoan phylum: transplantation immunity in sponges. Science 1979 ; 204 : 420–422. [Google Scholar]
  26. Hildemann WH, Raison RL, Cheung G, et al. Immunological specificity and memory in a scleractinian coral. Nature 1977 ; 270 : 219–223. [CrossRef] [PubMed] [Google Scholar]
  27. Cooper EL. Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 1968 ; 6 : 322–327. [CrossRef] [PubMed] [Google Scholar]
  28. Kurtz J. Specific memory within innate immune systems. Trends Immunol 2005 ; 26 : 186–192. [CrossRef] [PubMed] [Google Scholar]
  29. Faulhaber LM, Karp RD. A diphasic immune response against bacteria in the American cockroach. Immunology 1992 ; 75 : 378–381. [PubMed] [Google Scholar]
  30. Roth O, Kurtz J. Phagocytosis mediates specificity in the immune defence of an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda). Dev Comp Immunol 2009 ; 33 : 1151–1155. [CrossRef] [PubMed] [Google Scholar]
  31. Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol 2007 ; 179 : 7209–7214. [CrossRef] [PubMed] [Google Scholar]
  32. Morita M. Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 1995 ; 305 : 189–196. [Google Scholar]
  33. Moret Y, Schmid-Hempel P. Immune defence in bumble-bee offspring. Nature 2001 ; 414 : 506. [Google Scholar]
  34. Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Trans-generational immune priming in a social insect. Biol Lett 2005 ; 1 : 386–388. [CrossRef] [PubMed] [Google Scholar]
  35. Baguna J, Salo E, Auladell C. Regeneration and pattern-formation in planarians. 3. Evidence that neoblasts are totipotent stem-cells and the source of blastema cells. Development 1989 ; 107 : 77–86. [Google Scholar]
  36. Rebecchi L, Altiero T, Guidetti R, et al. Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 2009 ; 9 : 581–591. [CrossRef] [PubMed] [Google Scholar]
  37. Horikawa DD, Yamaguchi A, Sakashita T, et al. Tolerance of anhydrobiotic eggs of the Tardigrade Ramazzottius varieornatus to extreme environments. Astrobiology 2012 ; 12 : 283–289. [CrossRef] [PubMed] [Google Scholar]
  38. Horikawa DD, Cumbers J, Sakakibara I, et al. Analysis of DNA repair and protection in the Tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS One 2013 ; 8 : e64793. [CrossRef] [PubMed] [Google Scholar]
  39. Royet J. Les protéines PGRP, un chaînon manquant de l’immunité innée de la drosophile. Med Sci (Paris) 2001 ; 17 : 1359–1362. [EDP Sciences] [Google Scholar]
  40. Cédric Torre C, Ghigo E. La planaire : un ver immortel pour élucider la réponse immunitaire de l’homme. Med Sci (Paris) 2015; 31 : 20–2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.