Free Access
Issue
Med Sci (Paris)
Volume 33, Number 11, Novembre 2017
Page(s) 955 - 962
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173311012
Published online 04 December 2017
  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010 ; 39 : 412–423. [CrossRef] [PubMed] [Google Scholar]
  2. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 2004 ; 52 : 80–85. [CrossRef] [PubMed] [Google Scholar]
  3. Gouspillou G, Picard M, Godin R, et al. Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longev Healthspan 2013 ; 2 : 13. [CrossRef] [Google Scholar]
  4. Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014 ; 505 : 335–343. [CrossRef] [PubMed] [Google Scholar]
  5. Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015 ; 95 : 219–243. [CrossRef] [PubMed] [Google Scholar]
  6. Elustondo PA, Nichols M, Robertson GS, Pavlov EV. Mitochondrial Ca2+ uptake pathways. J Bioenerg Biomembr 2017 ; 49 : 113–119. [CrossRef] [PubMed] [Google Scholar]
  7. Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 2009 ; 46 : 821–831. [CrossRef] [PubMed] [Google Scholar]
  8. Richardson AP, Halestrap AP. Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 2016 ; 473 : 1129–1140. [CrossRef] [PubMed] [Google Scholar]
  9. Giorgio V, von Stockum S, Antoniel M, et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 2013 ; 110 : 5887–5892. [CrossRef] [Google Scholar]
  10. Dupont-Versteegden EE. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 2006 ; 12 : 7463–7466. [CrossRef] [PubMed] [Google Scholar]
  11. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298–300. [CrossRef] [PubMed] [Google Scholar]
  12. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972 ; 20 : 145–147. [CrossRef] [PubMed] [Google Scholar]
  13. Sinha-Hikim I, Sinha-Hikim AP, Parveen M, et al. Long-term supplementation with a cystine-based antioxidant delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci 2013 ; 68 : 749–759. [CrossRef] [PubMed] [Google Scholar]
  14. Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 2010 ; 45 : 138–148. [CrossRef] [PubMed] [Google Scholar]
  15. Kovacheva EL, Sinha Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology 2010 ; 151 : 628–638. [CrossRef] [PubMed] [Google Scholar]
  16. Yarian CS, Rebrin I, Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 2005 ; 330 : 151–156. [CrossRef] [Google Scholar]
  17. Chabi B, Ljubicic V, Menzies KJ, et al. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 2008 ; 7 : 2–12. [CrossRef] [PubMed] [Google Scholar]
  18. Capel F, Rimbert V, Lioger D, et al. Due to reverse electron transfer, mitochondrial H 2 O 2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech Ageing Dev 2005 ; 126 : 505–511. [CrossRef] [PubMed] [Google Scholar]
  19. Dirks AJ, Hofer T, Marzetti E, et al. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 2006 ; 5 : 179–195. [CrossRef] [PubMed] [Google Scholar]
  20. Lanza IR, Zabielski P, Klaus KA, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 2012 ; 16 : 777–788. [CrossRef] [PubMed] [Google Scholar]
  21. Umanskaya A, Santulli G, Xie W, et al. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci USA 2014 ; 111 : 15250–15255. [CrossRef] [Google Scholar]
  22. Hütter E, Skovbro M, Lener B, et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 2007 ; 6 : 245–256. [CrossRef] [PubMed] [Google Scholar]
  23. Gouspillou, Sgarioto N, Kapchinsky S, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 2014; 28 : 1621–33. [CrossRef] [PubMed] [Google Scholar]
  24. Picard M, Ritchie D, Wright KJ, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010 ; 9 : 1032–1046. [CrossRef] [PubMed] [Google Scholar]
  25. Sakellariou GK, Pearson T, Lightfoot AP, et al. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J 2016 ; 30 : 3771–3785. [CrossRef] [PubMed] [Google Scholar]
  26. Hou Y, Li S, Wu M, et al. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 2016 ; 310 : F547–F559. [CrossRef] [PubMed] [Google Scholar]
  27. Capel F, Buffière C, Mirand PP, Mosoni L. Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 2004 ; 125 : 367–373. [CrossRef] [PubMed] [Google Scholar]
  28. Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflüg Arch 2003 ; 446 : 270–278. [CrossRef] [Google Scholar]
  29. Tonkonogi M, Fernström M, Walsh B, et al. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflüg Arch 2003 ; 446 : 261–269. [CrossRef] [Google Scholar]
  30. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1989 ; 333 : 637–639. [CrossRef] [Google Scholar]
  31. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol 2000 ; 526 : 203–210. [CrossRef] [PubMed] [Google Scholar]
  32. Picard M, Ritchie D, Thomas MM, et al. Alterations in intrinsic mitochondrial function with aging are fiber type specific and do not explain differential atrophy between muscles. Aging Cell 2011 ; 10 : 1047–1055. [CrossRef] [PubMed] [Google Scholar]
  33. Kumaran S, Panneerselvam KS, Shila S, et al. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: role of carnitine and lipoic acid. Mol Cell Biochem 2005 ; 280 : 83–89. [CrossRef] [PubMed] [Google Scholar]
  34. Zangarelli A, Chanseaume E, Morio B, et al. Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: a mitochondria-mediated pathway. FASEB J 2006 ; 20 : 2439–2450. [CrossRef] [PubMed] [Google Scholar]
  35. Gouspillou, Bourdel-Marchasson I, Rouland R, et al. Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator. Biochim Biophys Acta 2010; 1797 : 143–51. [CrossRef] [PubMed] [Google Scholar]
  36. Gouspillou, Bourdel Marchasson I, Rouland R, et al. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13 : 39–48. [CrossRef] [PubMed] [Google Scholar]
  37. Figueiredo PA, Ferreira RM, Appell HJ, Duarte JA. Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. J Gerontol A Biol Sci Med Sci 2008 ; 63 : 350–359. [CrossRef] [PubMed] [Google Scholar]
  38. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005 ; 102 : 5618–5623. [CrossRef] [Google Scholar]
  39. Drew B, Phaneuf S, Dirks A, et al. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 2003 ; 284 : R474–R480. [CrossRef] [PubMed] [Google Scholar]
  40. Scarabelli CC, McCauley RB, Yuan Z, et al. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion. Am J Cardiol 2008 ; 101 : S42–S48. [CrossRef] [Google Scholar]
  41. Mansouri A, Muller FL, Liu Y, et al. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006 ; 127 : 298–306. [CrossRef] [PubMed] [Google Scholar]
  42. Amara CE, Shankland EG, Jubrias SA, et al. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci USA 2007 ; 104 : 1057–1062. [CrossRef] [Google Scholar]
  43. Marcinek DJ, Schenkman KA, Ciesielski WA, et al. Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 2005 ; 569 : 467–473. [CrossRef] [PubMed] [Google Scholar]
  44. Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 2000 ; 35 : 811–820. [CrossRef] [PubMed] [Google Scholar]
  45. Spendiff S, Vuda M, Gouspillou G, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol 2016 ; 594 : 7361–7379. [CrossRef] [PubMed] [Google Scholar]
  46. Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Versteegden EE. Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am J Physiol Regul Integr Comp Physiol 2005 ; 288 : R1288–R1296. [CrossRef] [PubMed] [Google Scholar]
  47. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011 ; 12 : 9–14. [CrossRef] [PubMed] [Google Scholar]
  48. Vigié P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Drummond MJ, Addison O, Brunker L, et al. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 2014 ; 69 : 1040–1048. [CrossRef] [PubMed] [Google Scholar]
  50. O’Leary MF, Vainshtein A, Iqbal S, et al. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol 2013 ; 304 : C422–C430. [CrossRef] [PubMed] [Google Scholar]
  51. Carnio S, LoVerso F, Baraibar MA, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 2014 ; 8 : 1509–1521. [CrossRef] [PubMed] [Google Scholar]
  52. Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci USA 2013 ; 110 : 8638–8643. [CrossRef] [Google Scholar]
  53. Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: isolation, structure and function. J Physiol 2011 ; 589 : 4413–4421. [CrossRef] [PubMed] [Google Scholar]
  54. Leduc-Gaudet JP, Picard M, St-Jean Pelletier F, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 2015 ; 6 : 17923–17937. [CrossRef] [PubMed] [Google Scholar]
  55. Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007 ; 120 : 838–848. [CrossRef] [PubMed] [Google Scholar]
  56. Barouki R. Stress oxydant et vieillissement. Med Sci (Paris) 2006 ; 22 : 266–272. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.