Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 11, Novembre 2017
|
|
---|---|---|
Page(s) | 955 - 962 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173311012 | |
Publié en ligne | 4 décembre 2017 |
- Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010 ; 39 : 412–423. [CrossRef] [PubMed] [Google Scholar]
- Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 2004 ; 52 : 80–85. [CrossRef] [PubMed] [Google Scholar]
- Gouspillou G, Picard M, Godin R, et al. Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longev Healthspan 2013 ; 2 : 13. [CrossRef] [Google Scholar]
- Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014 ; 505 : 335–343. [CrossRef] [PubMed] [Google Scholar]
- Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015 ; 95 : 219–243. [CrossRef] [PubMed] [Google Scholar]
- Elustondo PA, Nichols M, Robertson GS, Pavlov EV. Mitochondrial Ca2+ uptake pathways. J Bioenerg Biomembr 2017 ; 49 : 113–119. [CrossRef] [PubMed] [Google Scholar]
- Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 2009 ; 46 : 821–831. [CrossRef] [PubMed] [Google Scholar]
- Richardson AP, Halestrap AP. Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 2016 ; 473 : 1129–1140. [CrossRef] [PubMed] [Google Scholar]
- Giorgio V, von Stockum S, Antoniel M, et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 2013 ; 110 : 5887–5892. [CrossRef] [Google Scholar]
- Dupont-Versteegden EE. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 2006 ; 12 : 7463–7466. [CrossRef] [PubMed] [Google Scholar]
- Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298–300. [CrossRef] [PubMed] [Google Scholar]
- Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc 1972 ; 20 : 145–147. [CrossRef] [PubMed] [Google Scholar]
- Sinha-Hikim I, Sinha-Hikim AP, Parveen M, et al. Long-term supplementation with a cystine-based antioxidant delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci 2013 ; 68 : 749–759. [CrossRef] [PubMed] [Google Scholar]
- Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 2010 ; 45 : 138–148. [CrossRef] [PubMed] [Google Scholar]
- Kovacheva EL, Sinha Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology 2010 ; 151 : 628–638. [CrossRef] [PubMed] [Google Scholar]
- Yarian CS, Rebrin I, Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 2005 ; 330 : 151–156. [CrossRef] [Google Scholar]
- Chabi B, Ljubicic V, Menzies KJ, et al. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 2008 ; 7 : 2–12. [CrossRef] [PubMed] [Google Scholar]
- Capel F, Rimbert V, Lioger D, et al. Due to reverse electron transfer, mitochondrial H 2 O 2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech Ageing Dev 2005 ; 126 : 505–511. [CrossRef] [PubMed] [Google Scholar]
- Dirks AJ, Hofer T, Marzetti E, et al. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 2006 ; 5 : 179–195. [CrossRef] [PubMed] [Google Scholar]
- Lanza IR, Zabielski P, Klaus KA, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 2012 ; 16 : 777–788. [CrossRef] [PubMed] [Google Scholar]
- Umanskaya A, Santulli G, Xie W, et al. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci USA 2014 ; 111 : 15250–15255. [CrossRef] [Google Scholar]
- Hütter E, Skovbro M, Lener B, et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 2007 ; 6 : 245–256. [CrossRef] [PubMed] [Google Scholar]
- Gouspillou, Sgarioto N, Kapchinsky S, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 2014; 28 : 1621–33. [CrossRef] [PubMed] [Google Scholar]
- Picard M, Ritchie D, Wright KJ, et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010 ; 9 : 1032–1046. [CrossRef] [PubMed] [Google Scholar]
- Sakellariou GK, Pearson T, Lightfoot AP, et al. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J 2016 ; 30 : 3771–3785. [CrossRef] [PubMed] [Google Scholar]
- Hou Y, Li S, Wu M, et al. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am J Physiol Renal Physiol 2016 ; 310 : F547–F559. [CrossRef] [PubMed] [Google Scholar]
- Capel F, Buffière C, Mirand PP, Mosoni L. Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 2004 ; 125 : 367–373. [CrossRef] [PubMed] [Google Scholar]
- Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflüg Arch 2003 ; 446 : 270–278. [CrossRef] [Google Scholar]
- Tonkonogi M, Fernström M, Walsh B, et al. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflüg Arch 2003 ; 446 : 261–269. [CrossRef] [Google Scholar]
- Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1989 ; 333 : 637–639. [CrossRef] [Google Scholar]
- Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol 2000 ; 526 : 203–210. [CrossRef] [PubMed] [Google Scholar]
- Picard M, Ritchie D, Thomas MM, et al. Alterations in intrinsic mitochondrial function with aging are fiber type specific and do not explain differential atrophy between muscles. Aging Cell 2011 ; 10 : 1047–1055. [CrossRef] [PubMed] [Google Scholar]
- Kumaran S, Panneerselvam KS, Shila S, et al. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: role of carnitine and lipoic acid. Mol Cell Biochem 2005 ; 280 : 83–89. [CrossRef] [PubMed] [Google Scholar]
- Zangarelli A, Chanseaume E, Morio B, et al. Synergistic effects of caloric restriction with maintained protein intake on skeletal muscle performance in 21-month-old rats: a mitochondria-mediated pathway. FASEB J 2006 ; 20 : 2439–2450. [CrossRef] [PubMed] [Google Scholar]
- Gouspillou, Bourdel-Marchasson I, Rouland R, et al. Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator. Biochim Biophys Acta 2010; 1797 : 143–51. [CrossRef] [PubMed] [Google Scholar]
- Gouspillou, Bourdel Marchasson I, Rouland R, et al. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13 : 39–48. [CrossRef] [PubMed] [Google Scholar]
- Figueiredo PA, Ferreira RM, Appell HJ, Duarte JA. Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle. J Gerontol A Biol Sci Med Sci 2008 ; 63 : 350–359. [CrossRef] [PubMed] [Google Scholar]
- Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005 ; 102 : 5618–5623. [CrossRef] [Google Scholar]
- Drew B, Phaneuf S, Dirks A, et al. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 2003 ; 284 : R474–R480. [CrossRef] [PubMed] [Google Scholar]
- Scarabelli CC, McCauley RB, Yuan Z, et al. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion. Am J Cardiol 2008 ; 101 : S42–S48. [CrossRef] [Google Scholar]
- Mansouri A, Muller FL, Liu Y, et al. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 2006 ; 127 : 298–306. [CrossRef] [PubMed] [Google Scholar]
- Amara CE, Shankland EG, Jubrias SA, et al. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci USA 2007 ; 104 : 1057–1062. [CrossRef] [Google Scholar]
- Marcinek DJ, Schenkman KA, Ciesielski WA, et al. Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J Physiol 2005 ; 569 : 467–473. [CrossRef] [PubMed] [Google Scholar]
- Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 2000 ; 35 : 811–820. [CrossRef] [PubMed] [Google Scholar]
- Spendiff S, Vuda M, Gouspillou G, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol 2016 ; 594 : 7361–7379. [CrossRef] [PubMed] [Google Scholar]
- Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Versteegden EE. Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am J Physiol Regul Integr Comp Physiol 2005 ; 288 : R1288–R1296. [CrossRef] [PubMed] [Google Scholar]
- Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011 ; 12 : 9–14. [CrossRef] [PubMed] [Google Scholar]
- Vigié P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Drummond MJ, Addison O, Brunker L, et al. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 2014 ; 69 : 1040–1048. [CrossRef] [PubMed] [Google Scholar]
- O’Leary MF, Vainshtein A, Iqbal S, et al. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol 2013 ; 304 : C422–C430. [CrossRef] [PubMed] [Google Scholar]
- Carnio S, LoVerso F, Baraibar MA, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 2014 ; 8 : 1509–1521. [CrossRef] [PubMed] [Google Scholar]
- Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci USA 2013 ; 110 : 8638–8643. [CrossRef] [Google Scholar]
- Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: isolation, structure and function. J Physiol 2011 ; 589 : 4413–4421. [CrossRef] [PubMed] [Google Scholar]
- Leduc-Gaudet JP, Picard M, St-Jean Pelletier F, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 2015 ; 6 : 17923–17937. [CrossRef] [PubMed] [Google Scholar]
- Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007 ; 120 : 838–848. [CrossRef] [PubMed] [Google Scholar]
- Barouki R. Stress oxydant et vieillissement. Med Sci (Paris) 2006 ; 22 : 266–272. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.