Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 8-9, Août–Septembre 2017
Page(s) 797 - 800
Section Forum
DOI https://doi.org/10.1051/medsci/20173308027
Publié en ligne 18 septembre 2017
  1. de La Fontaine J. Les animaux malades de la peste. Fables, 1678. [Google Scholar]
  2. Ioannidis JPA, Boyack K, Klavans R, et al. How to make more published research true. PLoS Med 2014 ; 11 : e1001747. [CrossRef] [PubMed] [Google Scholar]
  3. Baker M, Dolgin E. Cancer reproducibility project releases first results. Nature 2017 ; 541 : 269–270. [CrossRef] [PubMed] [Google Scholar]
  4. Laframboise D. How many scientific papers just aren’t true? The Spectator 2016. [Google Scholar]
  5. Krauss LM. Donald Trump’s war on science. New Yorker 2016. [PubMed] [Google Scholar]
  6. Dascal M. The study of controversies and the theory and history of science. Sci Context 1998 ; 11 : 147. [CrossRef] [Google Scholar]
  7. Latour B. Pasteur et Pouchet : hétérogenèse de l’histoire des sciences (sous la direction de Michel Serres). Éléments d’histoire des sciences 1989 : 423–445. [Google Scholar]
  8. Pestre D. L’analyse de controverses dans l’étude des sciences depuis trente ans. Mil neuf cent. Rev d’histoire Intellect 2007 ; 25 : 29–43. [Google Scholar]
  9. Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater 2004 ; 3 : 330–336. [CrossRef] [PubMed] [Google Scholar]
  10. Jackson AM, Ying Hu Y, Silva PJ, Stellacci F. From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 2006 ; 128 : 11135–11147. [CrossRef] [PubMed] [Google Scholar]
  11. DeVries GA, Brunnbauer M, Hu Y, et al. Divalent metal nanoparticles. Science 2007 ; 315. [PubMed] [Google Scholar]
  12. Centrone A, Penzo E, Sharma M, et al. The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. Proc Natl Acad Sci USA 2008 ; 105 : 9886–9891. [CrossRef] [Google Scholar]
  13. Djuranovic P. Seven years of imaging artifacts: what gives? Rapha-Z-Lab 2012. [Google Scholar]
  14. Levy R. Divalent metal nanoparticles. PubPeer. https://pubpeer.com/publications/4DA88768C5B279E24E469CC0080A47. [Google Scholar]
  15. Verma A, Uzun O, Hu Y, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 2008 ; 7 : 588–595. [CrossRef] [PubMed] [Google Scholar]
  16. Xia T, Rome L, Nel A. Nanobiology: particles slip cell security. Nat Mater 2008 ; 7 : 519–520. [CrossRef] [PubMed] [Google Scholar]
  17. Cesbron Y, Shaw CP, Birchall JP, et al. Stripy nanoparticles revisited. Small 2012 ; 8 : 3714–3719. [CrossRef] [Google Scholar]
  18. Yu M, Stellacci F. Response to “Stripy nanoparticles revisited”. Small 2012 ; 8 : 3720–3726. [CrossRef] [Google Scholar]
  19. Levy R. Stripy timeline. 2012. Rapha-z-lab https://raphazlab.wordpress.com/2012/12/20/stripy-timeline/. [Google Scholar]
  20. Dove A. Do these stripes make my nanoparticles look weird? 2012. http://alandove.com/static/2012/12/do-these-stripes-make-my-nanoparticles-look-weird/. [Google Scholar]
  21. Fernig DG. Ferniglab Blog. https://ferniglab.wordpress.com/?s=stripy. [Google Scholar]
  22. Neuroskeptic. Science is interpretation. Discov Mag Blogs 2014. http://blogs.discovermagazine.com/neuroskeptic/2014/01/04/reanalysis-science/. [Google Scholar]
  23. Natelson D. A nano-controversy. Nanoscale views 2012. http://nanoscale.blogspot.co.uk/2012/12/a-nano-controversy.html. [Google Scholar]
  24. Stirling J, Lekkas I, Sweetman A, et al. Critical assessment of the evidence for striped nanoparticles. PLoS One 2014 ; 9 : e108482. [CrossRef] [PubMed] [Google Scholar]
  25. Ong QK, Stellacci F, Jeschke G, et al. Response to “Critical Assessment of the Evidence for Striped Nanoparticles”. PLoS One 2015 ; 10 : e0135594. [CrossRef] [PubMed] [Google Scholar]
  26. Rodríguez-Lorenzo L, de la Rica R, Álvarez-Puebla RA, et al. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 2012 ; 11 : 604–607. [CrossRef] [PubMed] [Google Scholar]
  27. de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 2012 ; 7 : 821–824. [CrossRef] [PubMed] [Google Scholar]
  28. PubPeer “Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth”. https://pubpeer.com/publications/3E8208F0654769A44C22D4E78DA2B8. [Google Scholar]
  29. PubPeer “Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye”. https://pubpeer.com/publications/54AECF24E96162E3A563AED08BE0B3. [Google Scholar]
  30. Des nanoparticules d’or pour dépister VIH ou cancer à l’œil nu. Le Monde 2012. [Google Scholar]
  31. Bates C. Colour-coded blood test that turns blue if you have HIV is 10 times more sensitive than current methods. The Daily Mail 2012. [Google Scholar]
  32. Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. J Am Chem Soc 2012 ; 134 : 1376–1391. [CrossRef] [PubMed] [Google Scholar]
  33. Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006 ; 312 : 1027–1030. [CrossRef] [PubMed] [Google Scholar]
  34. Seferos DS, Giljohann DA, Hill HD, et al. Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 2007 ; 129 : 15477–15479. [CrossRef] [PubMed] [Google Scholar]
  35. Zheng D, Seferos DS, Giljohann DA, et al. Aptamer nano-flares for molecular detection in living cells. Nano Lett 2009 ; 9 : 3258–3261. [CrossRef] [PubMed] [Google Scholar]
  36. Prigodich AE, Seferos DS, Massich MD, et al. Nano-flares for mRNA Regulation and Detection. ACS Nano 2009 ; 3 : 2147–2152. [CrossRef] [Google Scholar]
  37. Choi CHJ, Hao L, Narayan SP, et al. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 2013 ; 110 : 7625–7630. [CrossRef] [Google Scholar]
  38. Wu XA, Choi CHJ, Zhang C, et al. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J Am Chem Soc 2014 ; 136 : 7726–7733. [CrossRef] [PubMed] [Google Scholar]
  39. Schneider L. Do nanoparticles deliver? Merck’s Smart Flares and other controversies, 2015. https://forbetterscience.com/2015/11/20/do-nanoparticles-deliver-mercks-smart-flares-and-other-controversies/. [Google Scholar]
  40. Mason D, Carolan G, Held M, et al. The spherical nucleic acids mRNA detection paradox. ScienceOpen Res 2016 ; DOI: 10.14293/S2199-1006.1.SOR-CHEM.AZ1MJU.v1. [Google Scholar]
  41. Briley WE, Bondy MH, Randeria PS, et al. Quantification and real-time tracking of RNA in live cells using Sticky-flares. Proc Natl Acad Sci USA 2015 ; 112 : 9591–9595. [CrossRef] [Google Scholar]
  42. Mason D, Levy R. Sticky-flares: real-time tracking of mRNAs… or of endosomes? bioRxiv 2015. http://biorxiv.org/content/early/2015/10/19/029447. [Google Scholar]
  43. Munafò MR, Nosek BA, Bishop DVM, et al. A manifesto for reproducible science. Nat Hum Behav 2017 ; 1 : 21. [CrossRef] [Google Scholar]
  44. Glanz J, Armendariz A. Years of ethics charges, but star cancer researcher gets a pass. New York Times 2017. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.