Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 12, Décembre 2016
Page(s) 1097 - 1102
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163212013
Publié en ligne 3 janvier 2017
  1. Butterworth B. The mathematical brain London : Nelson, 1999 : 480 p. [Google Scholar]
  2. Andres M, Di Luca S, Pesenti M. Finger-counting : the missing tool? Behav Brain Sci 2008 ; 31 : 642–643. [CrossRef] [Google Scholar]
  3. Crollen V, Noël MP. The role of fingers in the development of counting and arithmetic skills. Acta Psychol 2015 ; 156 : 37–44. [CrossRef] [Google Scholar]
  4. Fayol M, Seron X, Campbell JID. About numerical representations : insights from neuropsychological, experimental and developmental studies. Handbook of mathematical cognition New York : Psychology Press, 2005 : 3–22. [Google Scholar]
  5. Fuson KC, Richards J, Briars DJ, Brainerd CJ. The acquisition and elaboration of the number word sequence. Children’s logical and mathematical cognition New York : Springer-Verlag, 1982 : 33–92. [CrossRef] [Google Scholar]
  6. Alibali MW, DiRusso AA. The function of gesture in learning to count : more than keeping track. Cogn Dev 1999 ; 14 : 37–56. [CrossRef] [Google Scholar]
  7. Wiese H. Iconic and non-iconic stages in number development : the role of language. Trends Cogn Sci 2003 ; 7 : 385–390. [CrossRef] [PubMed] [Google Scholar]
  8. Wiese H. Numbers, language, and the human mind Cambridge, MA : Cambridge University Press, 2003 : 360 p. [Google Scholar]
  9. Noël MP. Finger gnosia : a predictor of numerical abilities in children? Child Neuropsychol 2005 ; 11 : 413–430. [CrossRef] [PubMed] [Google Scholar]
  10. Di Luca S, Granà A, Semenza C, et al. Finger-digit compatibility in Arabic numerical processing. Q J Exp Psychol 2006 ; 59 : 1648–1663. [CrossRef] [PubMed] [Google Scholar]
  11. Imbo I, Vandierendonck A, Fias W. Passive hand move-ments disrupt adults’ counting strategies. Front Psychol 2011 ; 2 : 201. [CrossRef] [PubMed] [Google Scholar]
  12. Michaux N, Masson N, Pesenti M, Andres M. Selective interference of finger movements on basic addition and subtraction problem solving. Exp Psychol 2013 ; 60 : 197–205. [CrossRef] [Google Scholar]
  13. Pinel P, Piazza M, Le Bihan D, Dehaene S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 2004 ; 41 : 983–993. [CrossRef] [PubMed] [Google Scholar]
  14. Gerstmann J. Zur symptomatologie der hirnläsionen im übergangsgebiet der unteren parietal-und mittleren occipitalwindung. Nervenarzt 1930 ; 3 : 691–695. [Google Scholar]
  15. Rusconi E, Walsh V, Butterworth B. Dexterity with numbers : rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia 2005 ; 43 : 1609–1624. [CrossRef] [PubMed] [Google Scholar]
  16. Andres M, Seron X, Olivier E. Contribution of hand motor circuits to counting. J Cogn Neurosci 2007 ; 19 : 563–576. [CrossRef] [PubMed] [Google Scholar]
  17. Butterworth B. What counts. How every brain is hardwired for math. New York, NY : The Free Press, 1999 : 432 p. [Google Scholar]
  18. Butterworth B. The development of arithmetical abilities. J Child Psychol Psychiatry 2005 ; 46 : 3–18. [CrossRef] [PubMed] [Google Scholar]
  19. Anderson ML. Neural reuse : a fundamental organizational principle of the brain. Behav Brain Sci 2010 ; 33 : 245–313. [CrossRef] [PubMed] [Google Scholar]
  20. Penner-Wilger M, Anderson ML. The relation between finger gnosis and mathematical ability : why redeployment of neural circuits best explains the finding. Front Psychol. 2013 ; 4 : 877. [CrossRef] [PubMed] [Google Scholar]
  21. Crollen V, Mahe R, Collignon O, Seron X. The role of vision in the development of finger-number interactions : finger-counting and finger-montring in blind children. J Exp Child Psychol 2011 ; 109 : 525–539. [CrossRef] [PubMed] [Google Scholar]
  22. Crollen V, Noël MP, Seron X, et al. Visual experience influences the interactions between fingers and numbers. Cognition 2014 ; 133 : 91–96. [CrossRef] [PubMed] [Google Scholar]
  23. Dehaene S, Bossini S, Giraux P. The mental representation of parity and number magnitude. J Exp Psychol Gen 1993 ; 122 : 371–396. [CrossRef] [Google Scholar]
  24. Calabria M, Rossetti Y. Interference between number processing and line bisection : a methodology. Neuropsychologia 2005 ; 43 : 779–783. [CrossRef] [PubMed] [Google Scholar]
  25. Jewell G, McCourt ME. Pseudoneglect : a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 2000 ; 38 : 93–110. [CrossRef] [PubMed] [Google Scholar]
  26. Longo MR, Lourenco SF. Spatial attention and the mental number line : evidence for characteristic biases and compression. Neuropsychologia 2007 ; 45 : 1400–1407. [CrossRef] [PubMed] [Google Scholar]
  27. Longo MR, Lourenco SF. Bisecting the mental number line in near and far space. Brain Cogn 2010 ; 72 : 362–367. [CrossRef] [PubMed] [Google Scholar]
  28. Cattaneo Z, Fantino M, Silvanto J, et al. Tapping effects on numerical bisection. Exp Brain Res 2011 ; 208 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  29. Charbonneau G, Véronneau M, Boudrias-Fournier C, et al. The ventriloquist in periphery : impact of eccentricity-related reliability on audio-visual localization. J Vis 2013 ; 13 : 20. [CrossRef] [Google Scholar]
  30. Cooper RG, Sophian C. Early number development : discovering number space with addition and subtraction. Origins of cognitive skills Hillsdale, NJ : Erlbaum, 1984 : 157–192. [Google Scholar]
  31. Simon TJ. Reconceptualizing the origins of number knowledge : a non numerical account. Cogn Dev 1997 ; 12 : 349–372. [CrossRef] [Google Scholar]
  32. Castronovo J, Seron X. Semantic numerical representation in blind subjects : the role of vision in the spatial format of the mental number line. Q J Exp Psychol 2007 ; 60 : 101–119. [CrossRef] [PubMed] [Google Scholar]
  33. Szücs D, Csépe V. The parietal distance effect appears in both the congenitally blind and matched sighted controls in an acoustic number comparison task. Neurosci Lett 2005 ; 384 : 11–16. [CrossRef] [PubMed] [Google Scholar]
  34. Cattaneo Z, Fantino M, Silvanto J, et al. Blind individuals show pseudoneglect in bisecting numerical intervals. Atten Percept Psychophys 2011 ; 73 : 1021–1028. [CrossRef] [PubMed] [Google Scholar]
  35. Rinaldi L, Vecchi T, Fantino M, et al. The effect of hand movements on numerical bisection judgments in early blind and sighted individuals. Cortex 2015 ; 71 : 76–84. [CrossRef] [PubMed] [Google Scholar]
  36. Crollen V, Dormal G, Seron X, et al. Embodied numbers : the role of vision in the development of number-space interactions. Cortex 2013 ; 49 : 276–283. [CrossRef] [PubMed] [Google Scholar]
  37. Herrera A, Macizo P, Semenza C. The role of working memory in the association between number magnitude and space. Acta Psychol 2008 ; 128 : 225–237. [CrossRef] [Google Scholar]
  38. van Dijck JP, Gevers W, Fias W. Numbers are associated with different types of spatial information depending on the task. Cognition 2009 ; 113 : 248–253. [CrossRef] [PubMed] [Google Scholar]
  39. Bottini R, Crepaldi D, Casasanto D, et al. Space and time in the sighted and blind. Cognition 2015 ; 141 : 67–72. [CrossRef] [PubMed] [Google Scholar]
  40. Salillas E, El Yagoubi R, Semenza C. Sensory and cognitive processes of shifts of spatial attention induced by numbers : an ERP study. Cortex 2008 ; 44 : 406–413. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.