Free Access
Issue
Med Sci (Paris)
Volume 31, Number 12, Décembre 2015
Page(s) 1102 - 1108
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153112013
Published online 16 December 2015
  1. Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013 ; 3 : 84–91. [CrossRef] [PubMed] [Google Scholar]
  2. Leroy E, Pourrut X, Gonzalez J. Les chauves-souris, réservoirs du virus : Ebola, le mystère se dissipe. Med Sci (Paris) 2006 ; 22 : 78–79. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004 ; 10 : S88–S97. [CrossRef] [PubMed] [Google Scholar]
  4. Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 ; 367 : 1814–1820. [CrossRef] [PubMed] [Google Scholar]
  5. Chen EC, Yagi S, Kelly KR, et al. Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony. PLoS Pathog 2011 ; 7 : e1002155. [CrossRef] [PubMed] [Google Scholar]
  6. Xiang Z, Li Y, Cun A, et al. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg Infect Dis 2006 ; 12 : 10–13. [CrossRef] [Google Scholar]
  7. Chiu CY, Yagi S, Lu X, et al. A novel adenovirus species associated with an acute respiratory outbreak in a baboon colony and evidence of coincident human infection. MBio 2013 ; 4 : e00084. [PubMed] [Google Scholar]
  8. Kohl C, Vidovszky MZ, Mühldorfer K, et al. Genome analysis of bat adenovirus 2: indications of interspecies transmission. J Virol 2012 ; 86 : 1888–1892. [CrossRef] [PubMed] [Google Scholar]
  9. Jánoska M, Vidovszky M, Molnár V, et al. Novel adenoviruses and herpesviruses detected in bats. Vet J 2011 ; 189 : 118–121. [CrossRef] [PubMed] [Google Scholar]
  10. Wevers D, Metzger S, Babweteera F, et al. Novel adenoviruses in wild primates: a high level of genetic diversity and evidence of zoonotic transmissions. J Virol 2011 ; 85 : 10774–10784. [CrossRef] [PubMed] [Google Scholar]
  11. Harrach B, Benko M, Both G. Family Adenoviridae. In: Virus taxonomy. Oxford : Elsevier, 2011 : 125–141. [Google Scholar]
  12. Leen AM, Rooney CM. Adenovirus as an emerging pathogen in immunocompromised patients. Br J Haematol 2005 ; 128 : 135–144. [CrossRef] [PubMed] [Google Scholar]
  13. Green M, Piña M, Kimes R. Adenovirus DNA. I. Molecular weight and conformation. Proc Natl Acad Sci USA 1967; 57 : 1302–1309. [CrossRef] [Google Scholar]
  14. Seiradake E, Henaff D, Wodrich H, et al. The cell adhesion molecule CAR and sialic acid on human erythrocytes influence adenovirus in vivo biodistribution. PLoS Pathog 2009 ; 5 : e1000277. [CrossRef] [PubMed] [Google Scholar]
  15. Roelvink P, Lizonova A, Lee J. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998 ; 72 : 7909–7915. [PubMed] [Google Scholar]
  16. Rekosh D, Russell W, Bellet A, et al. Identification of a protein linked to the ends of adenovirus DNA. Cell 1977 ; 11 : 293–295. [CrossRef] [Google Scholar]
  17. Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012 ; 33 : 442–448. [CrossRef] [PubMed] [Google Scholar]
  18. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997 ; 275 : 1320–1323. [CrossRef] [PubMed] [Google Scholar]
  19. Salinas S, Bilsland LG, Henaff D, et al. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathog 2009 ; 5 : e1000442. [CrossRef] [PubMed] [Google Scholar]
  20. Freimuth P, Philipson L, Carson SD. The coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 2008 ; 323 : 67–87. [PubMed] [Google Scholar]
  21. Chrétien I, Marcuz A. CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 1998 ; 28 : 4094–4104. [CrossRef] [PubMed] [Google Scholar]
  22. Waddington SN, McVey JH, Bhella D, et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008 ; 132 : 397–409. [CrossRef] [PubMed] [Google Scholar]
  23. Kremer EJ. Mutagenesis of hexon FX hepatic tropism. Blood 2009 ; 114 : 929–930. [CrossRef] [PubMed] [Google Scholar]
  24. Kuhn JH, Li W, Choe H, et al. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci 2004 ; 61 : 2738–2743. [CrossRef] [PubMed] [Google Scholar]
  25. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013 ; 495 : 251–254. [CrossRef] [PubMed] [Google Scholar]
  26. Soudais C, Boutin S, Hong S. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptors, alternative receptors, and an RGD-independent pathway. J Virol 2000 ; 74 : 10639–10649. [CrossRef] [PubMed] [Google Scholar]
  27. Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006 ; 24 : 849–862. [CrossRef] [PubMed] [Google Scholar]
  28. Seth P. Adenoviruses: basic biology to gene therapy. Austin, TX : R.G. Landes Company, 1999 : 314 p. [Google Scholar]
  29. Weinmann R, Raskas HJ, Roeder RG. Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 1974 ; 71 : 3426–3439. [CrossRef] [Google Scholar]
  30. Nevins J. Regulation of early adenovirus gene expression. Microbiol Rev 1987 ; 51 : 419–430. [PubMed] [Google Scholar]
  31. Jones N, Shenk T. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci USA 1979 ; 76 : 3665–3669. [CrossRef] [Google Scholar]
  32. Hoeben RC, Uil TG. Adenovirus DNA replication. Cold Spring Harb Perspect Biol 2013 ; 5 : a013003. [CrossRef] [PubMed] [Google Scholar]
  33. Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, et al. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 1989 ; 86 : 3823–3827. [CrossRef] [Google Scholar]
  34. Bridge E, Medghalchi S, Ubol S, et al. Adenovirus early region 4 and DNA synthesis. Virology 1993 ; 193 : 794–801. [CrossRef] [PubMed] [Google Scholar]
  35. Carvalho T, Seeler JS, Öhman K, et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 1995 ; 131 : 45–56. [CrossRef] [PubMed] [Google Scholar]
  36. Evans JD, Hearing P. Distinct roles of the adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J Virol 2003 ; 77 : 5295–5304. [CrossRef] [PubMed] [Google Scholar]
  37. Toth M, Doerfler W, Shenk T. Adenovirus DNA replication facilitates binding of the MLTF/USF transcription factor to the viral major late promoter within infected cells. Nucleic Acids Res 1992 ; 20 : 5143–5148. [CrossRef] [PubMed] [Google Scholar]
  38. Hösel M, Schröer J, Webb D, et al. Cellular and early viral factors in the interaction of adenovirus type 12 with hamster cells: the abortive response. Virus Res 2001 ; 81 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  39. Armentero M, Horwitz M, Mermod N. Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. Proc Natl Acad Sci USA 1994 ; 91 : 11537–11541. [CrossRef] [Google Scholar]
  40. Lau SKP, Li KSM, Tsang AKL, et al. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol 2012 ; 86 : 11906–11918. [Google Scholar]
  41. Engelmann I, Madisch I, Pommer H, et al. An outbreak of epidemic keratoconjunctivitis caused by a new intermediate adenovirus 22/H8 identified by molecular typing. Clin Infect Dis 2006 ; 43 : e64–e66. [CrossRef] [PubMed] [Google Scholar]
  42. Walsh MP, Chintakuntlawar A, Robinson CM, et al. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One 2009 ; 4 : e5635. [CrossRef] [PubMed] [Google Scholar]
  43. Gonzalez G, Koyanagi KO, Aoki K, et al. Intertypic modular exchanges of genomic segments by homologous recombination at universally conserved segments in human adenovirus species D. Gene 2014 ; 547 : 10–17. [CrossRef] [PubMed] [Google Scholar]
  44. Lukashev AN, Ivanova OE, Eremeeva TP, et al. Evidence of frequent recombination among human adenoviruses. J Gen Virol 2008 ; 89 : 380–388. [CrossRef] [PubMed] [Google Scholar]
  45. Walsh MP, Seto J, Jones MS, et al. Computational analysis identifies human adenovirus type 55 as a re-emergent acute respiratory disease pathogen. J Clin Microbiol 2010 ; 48 : 991–993. [CrossRef] [PubMed] [Google Scholar]
  46. Robinson C, Singh G, Henquell C. Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology 2011 ; 409 : 141–147. [CrossRef] [PubMed] [Google Scholar]
  47. Purkayastha A, Ditty SE, Su J, et al. Genomic and bioinformatics analysis of HAdV-4, a human adenovirus causing acute respiratory disease: implications for gene therapy and vaccine vector development. J Virol 2005 ; 79 : 2559–2572. [CrossRef] [PubMed] [Google Scholar]
  48. Dehghan S, Seto J, Liu EB, et al. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events. Virology 2013 ; 443 : 197–207. [CrossRef] [PubMed] [Google Scholar]
  49. Singh G, Robinson CM, Dehghan S, et al. Homologous recombination in E3 genes of human adenovirus species D. J Virol 2013 ; 87 : 12481–12488. [CrossRef] [PubMed] [Google Scholar]
  50. Dehghan S, Seto J, Jones MS, et al. Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen. Virology 2013 ; 447 : 265–273. [CrossRef] [PubMed] [Google Scholar]
  51. Li Y, Ge X, Zhang H, et al. Host range, prevalence, and genetic diversity of adenoviruses in bats. J Virol 2010 ; 84 : 3889–3897. [CrossRef] [PubMed] [Google Scholar]
  52. Nociari M, Ocheretina O, Schoggins JW, et al. Sensing infection by adenovirus : Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. J Virol 2007 ; 81 : 4145–4157. [CrossRef] [PubMed] [Google Scholar]
  53. Hendrickx R, Stichling N, Koelen J, et al. Innate immunity to adenovirus. Hum Gene Ther 2014 ; 25 : 265–284. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.