Free Access
Issue
Med Sci (Paris)
Volume 31, Number 4, Avril 2015
Page(s) 377 - 382
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153104011
Published online 08 May 2015
  1. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002 ; 418 : 646–650. [CrossRef] [PubMed] [Google Scholar]
  2. Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008 ; 451 : 425–430. [CrossRef] [PubMed] [Google Scholar]
  3. Stremlau M, Owens CM, Perron MJ, et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 2004 ; 427 : 848–853. [CrossRef] [PubMed] [Google Scholar]
  4. Hrecka K, Hao C, Gierszewska M, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011 ; 474 : 658–661. [CrossRef] [PubMed] [Google Scholar]
  5. Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011 ; 474 : 654–657. [CrossRef] [PubMed] [Google Scholar]
  6. Goujon C, Moncorge O, Bauby H, et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013 ; 502 : 559–562. [CrossRef] [PubMed] [Google Scholar]
  7. Kane M, Yadav SS, Bitzegeio J, et al. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 2013 ; 502 : 563–566. [CrossRef] [PubMed] [Google Scholar]
  8. Liu Z, Pan Q, Ding S, et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 2013 ; 14 : 398–410. [CrossRef] [PubMed] [Google Scholar]
  9. La Goujon C. protéine MX2 humaine est l’un des acteurs de la réponse interféron contre le VIH-1. Med Sci (Paris) 2014 ; 30 : 233–235. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Brass AL, Huang IC, Benita Y, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009 ; 139 : 1243–1254. [CrossRef] [PubMed] [Google Scholar]
  11. Lu J, Pan Q, Rong L, et al. The IFITM proteins inhibit HIV-1 infection. J Virol 2011 ; 85 : 2126–2137. [CrossRef] [PubMed] [Google Scholar]
  12. Weidner JM, Jiang D, Pan XB, et al. Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms. J Virol 2010 ; 84 : 12646–12657. [CrossRef] [PubMed] [Google Scholar]
  13. Anafu AA, Bowen CH, Chin CR, et al. Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J Biol Chem 2013 ; 288 : 17261–17271. [CrossRef] [PubMed] [Google Scholar]
  14. Wilkins C, Woodward J, Lau DT, et al. IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 2013 ; 57 : 461–469. [CrossRef] [PubMed] [Google Scholar]
  15. Mudhasani R, Tran JP, Retterer C, et al. IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift valley fever virus. J Virol 2013 ; 87 : 8451–8464. [CrossRef] [PubMed] [Google Scholar]
  16. Huang IC, Bailey CC, Weyer JL, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog 2011 ; 7 : e1001258. [CrossRef] [PubMed] [Google Scholar]
  17. Warren CJ, Griffin LM, Little AS, et al. The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus. PLoS One 2014 ; 9 : e96579. [CrossRef] [PubMed] [Google Scholar]
  18. Zhao X, Guo F, Liu F, et al. Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc Natl Acad Sci USA 2014 ; 111 : 6756–6761. [CrossRef] [Google Scholar]
  19. Smith SE, Gibson MS, Wash RS, et al. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J Virol 2013 ; 87 : 12957–12966. [CrossRef] [PubMed] [Google Scholar]
  20. Hickford D, Frankenberg S, Shaw G, Renfree MB. Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics 2012 ; 13 : 155. [CrossRef] [PubMed] [Google Scholar]
  21. Yount JS, Karssemeijer RA, Hang HC. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 2012 ; 287 : 19631–19641. [CrossRef] [PubMed] [Google Scholar]
  22. Bailey CC, Kondur HR, Huang IC, Farzan M. Interferon-induced transmembrane protein 3 is a type II transmembrane protein. J Biol Chem 2013 ; 288 : 32184–32193. [CrossRef] [PubMed] [Google Scholar]
  23. Weston S, Czieso S, White IJ, et al. A membrane topology model for human interferon inducible transmembrane protein 1. PLoS One 2014 ; 9 : e104341. [CrossRef] [PubMed] [Google Scholar]
  24. John SP, Chin CR, Perreira JM, et al. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol 2013 ; 87 : 7837–7852. [CrossRef] [PubMed] [Google Scholar]
  25. Jia R, Pan Q, Ding S, et al. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol 2012 ; 86 : 13697–13707. [CrossRef] [PubMed] [Google Scholar]
  26. Yount JS, Moltedo B, Yang YY, et al. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol 2010 ; 6 : 610–614. [CrossRef] [PubMed] [Google Scholar]
  27. Shan Z, Han Q, Nie J, et al. Negative regulation of interferon-induced transmembrane protein 3 by SET7-mediated lysine monomethylation. J Biol Chem 2013 ; 288 : 35093–35103. [CrossRef] [PubMed] [Google Scholar]
  28. Chesarino NM, McMichael TM, Hach JC, Yount JS. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J Biol Chem 2014 ; 289 : 11986–11992. [CrossRef] [PubMed] [Google Scholar]
  29. Feeley EM, Sims JS, John SP, et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 2011 ; 7 : e1002337. [CrossRef] [PubMed] [Google Scholar]
  30. Amini-Bavil-Olyaee S, Choi YJ, Lee JH, et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 2013 ; 13 : 452–464. [CrossRef] [PubMed] [Google Scholar]
  31. Jia R, Xu F, Qian J, et al. Identification of an endocytic signal essential for the antiviral action of IFITM3. Cell Microbiol 2014 ; 16 : 1080–1093. [CrossRef] [PubMed] [Google Scholar]
  32. Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 2013 ; 13 : 46–57. [CrossRef] [PubMed] [Google Scholar]
  33. Cavrois M, De Noronha C, Greene WC. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 2002 ; 20 : 1151–1154. [CrossRef] [PubMed] [Google Scholar]
  34. Li K, Markosyan RM, Zheng YM, et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog 2013 ; 9 : e1003124. [CrossRef] [PubMed] [Google Scholar]
  35. Desai TM, Marin M, Chin CR, et al. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog 2014 ; 10 : e1004048. [CrossRef] [PubMed] [Google Scholar]
  36. Lin TY, Chin CR, Everitt AR, et al. Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction. Cell Rep 2013 ; 5 : 895–908. [CrossRef] [PubMed] [Google Scholar]
  37. Chutiwitoonchai N, Hiyoshi M, Hiyoshi-Yoshidomi Y, et al. Characteristics of IFITM, the newly identified IFN-inducible anti-HIV-1 family proteins. Microbes Infect 2013 ; 15 : 280–290. [CrossRef] [PubMed] [Google Scholar]
  38. Ding S, Pan Q, Liu SL, Liang C. HIV-1 mutates to evade IFITM1 restriction. Virology 2014 ; 454–5 : 11–24. [CrossRef] [Google Scholar]
  39. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002 ; 418 : 293–300. [CrossRef] [PubMed] [Google Scholar]
  40. Hisamatsu T, Watanabe M, Ogata H, et al. Interferon-inducible gene family 1–8U expression in colitis-associated colon cancer and severely inflamed mucosa in ulcerative colitis. Cancer Res 1999 ; 59 : 5927–5931. [PubMed] [Google Scholar]
  41. Marquet R, Guerreri S, Bernacchi S, et al. Un facteur de transcription se fait complice du VIH-1 pour détruire les défenses cellulaires. Med Sci (Paris) 2012; 28 : 356–358. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Lahouassa H, Dragin L, Transy C, et al. SAMHD1 prive le VIH des nucléotides essentiels à la synthèse d’ADN viral. Med Sci (Paris) 2012 ; 28 : 909–910. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.