Chémobiologie
Accès gratuit
Numéro
Med Sci (Paris)
Volume 31, Numéro 2, Février 2015
Chémobiologie
Page(s) 187 - 196
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153102016
Publié en ligne 4 mars 2015
  1. Carragher NO, Brunton VG, Frame MC. Combining imaging and pathway profiling: an alternative approach to cancer drug discovery. Drug Discov Today 2012 ; 17 : 203–214. [CrossRef] [PubMed] [Google Scholar]
  2. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004 ; 3 : 711–715. [CrossRef] [PubMed] [Google Scholar]
  3. Prudent R, Soleilhac E, Barette C, et al. Les criblages phénotypiques ou comment faire d’une pierre deux coups : découvrir la cible et la molécule pharmacologique capable de la réguler. Med Sci (Paris) 2013 ; 29 : 897–905. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Perrimon N, Friedman A, Mathey-Prevot B, Eggert US. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 2007 ; 12 : 28–33. [CrossRef] [PubMed] [Google Scholar]
  5. Perrimon N, Mathey-Prevot B. Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics 2007 ; 175 : 7–16. [CrossRef] [PubMed] [Google Scholar]
  6. Rines DR, Tu B, Miraglia L, et al. High-content screening of functional genomic libraries. Methods Enzymol 2006 ; 414 : 530–565. [CrossRef] [PubMed] [Google Scholar]
  7. Zock JM. Applications of high content screening in life science research. Comb Chem High Throughput Screen 2009 ; 12 : 870–876. [CrossRef] [PubMed] [Google Scholar]
  8. Mouchet EH, Simpson PB. High-content assays in oncology drug discovery: opportunities and challenges. IDrugs 2008 ; 11 : 422–427. [PubMed] [Google Scholar]
  9. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004 ; 428 : 431–437. [CrossRef] [PubMed] [Google Scholar]
  10. Ganesan AK, Ho H, Bodemann B, et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet 2008 ; 4 : e1000298. [CrossRef] [PubMed] [Google Scholar]
  11. Eggert US, Mitchison TJ. Small molecule screening by imaging. Curr Opin Chem Biol 2006 ; 10 : 232–237. [CrossRef] [PubMed] [Google Scholar]
  12. Korn K, Krausz E. Cell-based high-content screening of small-molecule libraries. Curr Opin Chem Biol 2007 ; 11 : 503–510. [CrossRef] [PubMed] [Google Scholar]
  13. Perlman ZE, Slack MD, Feng Y, et al. Multidimensional drug profiling by automated microscopy. Science 2004 ; 306 : 1194–1198. [CrossRef] [PubMed] [Google Scholar]
  14. Giuliano KA. Optimizing the integration of immunoreagents and fluorescent probes for multiplexed high content screening assays. Methods Mol Biol 2007 ; 356 : 189–193. [PubMed] [Google Scholar]
  15. Young DW, Bender A, Hoyt J, et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 2008 ; 4 : 59–68. [CrossRef] [PubMed] [Google Scholar]
  16. Maréchal E, Roy S, Lafanechère L. Chemogénomique : des petites molécules pour explorer le vivant. Une introduction à l’usage des biologistes, chimistes et informaticiens. Paris : EDP Sciences, 2007 : 258 p. [Google Scholar]
  17. Walter T, Held M, Neumann B, et al. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging. J Struct Biol 2010 ; 170 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  18. Fenistein D, Lenseigne B, Christophe T, et al. A fast, fully automated cell segmentation algorithm for high-throughput and high-content screening. Cytometry A 2008 ; 73 : 958–964. [CrossRef] [PubMed] [Google Scholar]
  19. Shariff A, Kangas J, Coelho LP, et al. Automated image analysis for high-content screening and analysis. J Biomol Screen 2010 ; 15 : 726–734. [CrossRef] [PubMed] [Google Scholar]
  20. Horvath P, Wild T, Kutay U, Csucs G. Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J Biomol Screen 2011 ; 16 : 1059–1067. [CrossRef] [PubMed] [Google Scholar]
  21. Carpenter AE, Jones TR, Lamprecht MR, et al. Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006 ; 7 : R100. [CrossRef] [PubMed] [Google Scholar]
  22. Walter T, Shattuck DW, Baldock R, et al. Visualization of image data from cells to organisms. Nat Methods 2010 ; 7 : S26–S41. [CrossRef] [PubMed] [Google Scholar]
  23. Soleilhac E, Nadon R, Lafanechere L. High-content screening for the discovery of pharmacological compounds: advantages, challenges and potential benefits of recent technological developments. Expert Opin Drug Discov 2010 ; 5 : 135–144. [CrossRef] [PubMed] [Google Scholar]
  24. Loo LH, Lin HJ, Steininger RJ 3rd, et al. An approach for extensibly profiling the molecular states of cellular subpopulations. Nat Methods 2009 ; 6 : 759–765. [CrossRef] [PubMed] [Google Scholar]
  25. Loo LH, Wu LF, Altschuler SJ. Image-based multivariate profiling of drug responses from single cells. Nat Methods 2007 ; 4 : 445–453. [PubMed] [Google Scholar]
  26. Neumann B, Held M, Liebel U, et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 2006 ; 3 : 385–390. [CrossRef] [PubMed] [Google Scholar]
  27. Hamilton NA, Pantelic RS, Hanson K, Teasdale RD. Fast automated cell phenotype image classification. BMC Bioinformatics 2007 ; 8 : 110. [CrossRef] [PubMed] [Google Scholar]
  28. Jones TR, Carpenter AE, Lamprecht MR, et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 2009 ; 106 : 1826–1831. [CrossRef] [Google Scholar]
  29. Smith K, Horvath P. Active learning strategies for phenotypic profiling of high-content Screens. J Biomol Screen 2014 ; 19 : 685–695. [CrossRef] [PubMed] [Google Scholar]
  30. Brideau C, Gunter B, Pikounis B, Liaw A. Improved statistical methods for hit selection in high-throughput screening. J Biomol Screen 2003 ; 8 : 634–647. [CrossRef] [PubMed] [Google Scholar]
  31. Kevorkov D, Makarenkov V. Statistical analysis of systematic errors in high-throughput screening. J Biomol Screen 2005 ; 10 : 557–567. [CrossRef] [PubMed] [Google Scholar]
  32. Malo N, Hanley JA, Cerquozzi S, et al. Statistical practice in high-throughput screening data analysis. Nat Biotechnol 2006 ; 24 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  33. Gagarin A, Makarenkov V, Zentilli P. Using clustering techniques to improve hit selection in high-throughput screening. J Biomol Screen 2006 ; 11 : 903–914. [CrossRef] [PubMed] [Google Scholar]
  34. Makarenkov V, Zentilli P, Kevorkov D, et al. An efficient method for the detection and elimination of systematic error in high-throughput screening. Bioinformatics 2007 ; 23 : 1648–1657. [CrossRef] [PubMed] [Google Scholar]
  35. Kozak K, Agrawal A, Machuy N, Csucs G. Data mining techniques in high content screening: A survey. J Comput Sci Syst Biol 2009 ; 2 : 219–239. [CrossRef] [Google Scholar]
  36. Carey KL, Westwood NJ, Mitchison TJ, Ward GE. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci USA 2004 ; 101 : 7433–7438. [CrossRef] [Google Scholar]
  37. Peterson RT, Fishman MC. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 2004 ; 76 : 569–591. [CrossRef] [PubMed] [Google Scholar]
  38. Simpson KJ, Davis GM, Boag PR. Comparative high-throughput RNAi screening methodologies in C. elegans and mammalian cells. New Biotechnol 2012 ; 29 : 459–470. [CrossRef] [Google Scholar]
  39. Wählby C, Kamentsky L, Liu ZH, et al. An image analysis toolbox for high-throughput C. elegans assays. Nat Methods 2012 ; 9 : 666–670. [CrossRef] [PubMed] [Google Scholar]
  40. LaBarbera DV, Reid BG, Yoo BH. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin Drug Discov 2012 ; 7 : 819–830. [CrossRef] [PubMed] [Google Scholar]
  41. Li Q, Chen C, Kapadia A, et al. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J Biomol Screen 2011 ; 16 : 141–154. [CrossRef] [PubMed] [Google Scholar]
  42. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2013 ; 18 : 240–249. [CrossRef] [PubMed] [Google Scholar]
  43. Rimann M, Graf-Hausner U. Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 2012 ; 23 : 803–809. [CrossRef] [PubMed] [Google Scholar]
  44. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014 ; 343 : 80–84. [CrossRef] [PubMed] [Google Scholar]
  45. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 ; 343 : 84–87. [CrossRef] [PubMed] [Google Scholar]
  46. De Souza A, Bittker JA, Lahr DL, et al. An overview of the challenges in designing, Integrating, and delivering BARD: a public chemical-biology resource and query portal for multiple organizations, locations, and disciplines. J Biomol Screen 2014 ; 19 : 614–627. [CrossRef] [PubMed] [Google Scholar]
  47. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014 ; 30 : 186–193. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Gilgenkrantz H.. La révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Asensio C.. Application de la méthode Cas9/SRISPR à l’étude de la fonction synaptique. Med Sci (Paris) 2015 ; 31 : 137–138. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.