Accès gratuit
Numéro
Med Sci (Paris)
Volume 30, Numéro 8-9, Août–Septembre 2014
Page(s) 765 - 771
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20143008014
Publié en ligne 1 septembre 2014
  1. Bieniasz PD. Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 2004 ; 5 : 1109–1115. [CrossRef] [PubMed]
  2. Rajsbaum R, Garcia-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2013 ; 426 : 1265–1284. [CrossRef] [PubMed]
  3. Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005 ; 3 : 799–808. [CrossRef] [PubMed]
  4. McNab FW, Rajsbaum R, Stoye JP, O’Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol 2011 ; 23 : 46–56. [CrossRef] [PubMed]
  5. De Thé H, Lavau C, Marchio A, et al. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991 ; 66 : 675–684. [CrossRef] [PubMed]
  6. Nisole S, Maroui MA, Mascle XH, et al. Differential roles of PML isoforms. Front Oncol 2013 ; 3 : 125. [CrossRef] [PubMed]
  7. Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001 ; 20 : 7223–7233. [CrossRef] [PubMed]
  8. Ishov AM, Sotnikov AG, Negorev D, et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 1999 ; 147 : 221–234. [CrossRef] [PubMed]
  9. Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene 2008 ; 27 : 6299–6312. [CrossRef] [PubMed]
  10. Krieghoff-Henning E, Hofmann TG. Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 2008 ; 1783 : 2185–2194. [CrossRef] [PubMed]
  11. Jin G, Wang YJ, Lin HK. Emerging cellular functions of cytoplasmic PML. Front Oncol 2013 ; 3 : 147. [PubMed]
  12. Martin N, Dejean A, Bischof O. TBX2, un nouvel acteur dans la sénescence cellulaire induite par PML. Med Sci (Paris) 2012 ; 28 : 248–250. [CrossRef] [EDP Sciences] [PubMed]
  13. Chelbi-Alix MK, Quignon F, Pelicano L, et al. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 1998 ; 72 : 1043–1051. [PubMed]
  14. Regad T, Saib A, Lallemand-Breitenbach V, et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J 2001 ; 20 : 3495–3505. [CrossRef] [PubMed]
  15. Pampin M, Simonin Y, Blondel B, et al. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol 2006 ; 80 : 8582–8592. [CrossRef] [PubMed]
  16. Blondel D, Kheddache S, Lahaye X, et al. Resistance to rabies virus infection conferred by the PMLIV isoform. J Virol 2010 ; 84 : 10719–10726. [CrossRef] [PubMed]
  17. Maroui MA, Pampin M, Chelbi-Alix MK. Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol 2011 ; 85 : 13164–13173. [CrossRef] [PubMed]
  18. El Asmi F, Maroui MA, Dutrieux J, et al. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog 2014 ; 10 : e1003975. [CrossRef] [PubMed]
  19. Regad T, Chelbi-Alix MK. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 2001 ; 20 : 7274–7286. [CrossRef] [PubMed]
  20. Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007 ; 89 : 819–830. [CrossRef] [PubMed]
  21. Geoffroy MC, Chelbi-Alix MK. Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 2011 ; 31 : 145–158. [CrossRef] [PubMed]
  22. Chelbi-Alix MK, Wietzerbin J. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie 2007 ; 89 : 713–718. [CrossRef] [PubMed]
  23. Chelbi-Alix MK, Pelicano L, Quignon F, et al. Induction of the PML protein by interferons in normal and APL cells. Leukemia 1995 ; 9 : 2027–2033. [PubMed]
  24. Stadler M, Chelbi-Alix MK, Koken MH, et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995 ; 11 : 2565–2573. [PubMed]
  25. El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie 2011 ; 93 : 389–398. [CrossRef] [PubMed]
  26. Bonilla WV, Pinschewer DD, Klenerman P, et al. Effects of promyelocytic leukemia protein on virus-host balance. J Virol 2002 ; 76 : 3810–3818. [CrossRef] [PubMed]
  27. McNally BA, Trgovcich J, Maul GG A, et al. role for cytoplasmic PML in cellular resistance to viral infection. PloS one 2008 ; 3 : e2277. [CrossRef] [PubMed]
  28. Reichelt M, Wang L, Sommer M, et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011 ; 7 : e1001266. [CrossRef] [PubMed]
  29. Cuchet D, Sykes A, Nicolas A, et al. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2011 ; 124 : 280–291. [CrossRef] [PubMed]
  30. Mitchell AM, Hirsch ML, Li C, Samulski RJ. Promyelocytic leukemia protein is a cell-intrinsic factor inhibiting parvovirus DNA replication. J Virol 2014 ; 88 : 925–936. [CrossRef] [PubMed]
  31. Aminev AG, Amineva SP, Palmenberg AC. Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 2003 ; 95 : 59–73. [CrossRef] [PubMed]
  32. El Mchichi B, Regad T, Maroui MA, et al. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010 ; 84 : 11634–11645. [CrossRef] [PubMed]
  33. Kyratsous CA, Silverstein SJ. Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 2009 ; 83 : 4262–4274. [CrossRef] [PubMed]
  34. Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997 ; 278 : 1957–1960. [CrossRef] [PubMed]
  35. Liou YC, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011 ; 36 : 501–514. [CrossRef] [PubMed]
  36. Saitoh T, Tun-Kyi A, Ryo A, et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 2006 ; 7 : 598–605. [CrossRef] [PubMed]
  37. Yang K, Shi HX, Liu XY, et al. TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 2009 ; 182 : 3782–3792. [CrossRef] [PubMed]
  38. Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Med Sci (Paris) 2001 ; 27 : 1019–1024. [CrossRef] [EDP Sciences] [PubMed]
  39. Jemilloux Y, Henry T. Les inflammasomes. Plates-formes de l’immunité innée. Med Sci (Paris) 2013 ; 29 : 975–984. [CrossRef] [EDP Sciences] [PubMed]
  40. Marsolier J, Weitzman JB. Pin1 : une peptidyl prolyl cis-trans isomérase multifonctionnelle et une cible anticancéreuse prometteuse. Med Sci (Paris) 2014 ; 30 : 772–778. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.