Accès gratuit
Med Sci (Paris)
Volume 28, Numéro 8-9, Août–Septembre 2012
Page(s) 746 - 756
Section M/S Revues
Publié en ligne 22 août 2012
  1. United Nations scientific committee on the effects of atomic radiation. Sources and effects of ionizing radiation. Health effects due to radiation from the Chernobyl accident. In : UNSCEAR 2008, vol II. New York : United Nations, 2011 : annexe D.
  2. Christodouleas JP, Robert D, Forrest RD, et al. Short-term and long-term health risks of nuclear-power-plant accidents. N Engl J Med 2011 ; 364 : 2334–2341. [CrossRef] [PubMed]
  3. Loevinger R, Budinger TF, Watson EE. MIRD Primer. Reston, VA : Society of Nuclear Medicine, 1999.
  4. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 2007 ; 168 : 1–64. [CrossRef] [PubMed]
  5. Green DM, Whitton JA, Stovall M, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol 2002 ; 187 : 1070–1080. [CrossRef] [PubMed]
  6. Garsi JP, Schlumberger M, Rubino C, et al. Therapeutic administration of 131I for differentiated thyroid cancer, radiation dose to ovaries and outcome of pregnancies. J Nucl Med 2008 ; 49 : 845–852. [CrossRef] [PubMed]
  7. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev 2010 ; 31 : 756–773. [CrossRef] [PubMed]
  8. Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995 ; 141 : 259–277. [CrossRef] [PubMed]
  9. Simon SL, Bouville A, Land CE, Beck HL. Radiation doses and cancer risks in the Marshall Islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary. Health Phys 2010 ; 99 : 105–123. [CrossRef] [PubMed]
  10. Dickman PW, Holm LE, Lundell G, et al. Thyroid cancer risk after thyroid examination with 131I: a population-based cohort study in Sweden. Int J Cancer 2003 ; 106 : 580–587. [CrossRef] [PubMed]
  11. Holm LE, Hall P, Wiklund K, et al. Cancer risk after iodine-131 therapy for hyperthyroidism. J Natl Cancer Inst 1991 ; 83 : 1072–1077. [CrossRef] [PubMed]
  12. Nauman J, Wolff J. Iodide prophylaxis in Poland after the Chernobyl reactor accident: benefits and risks. Am J Med 1993 ; 94 : 524–532. [CrossRef] [PubMed]
  13. Colonna M, Guizard AV, Schvartz C, et al. A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000). Eur J Cancer 2007 ; 43 : 891–900. [CrossRef] [PubMed]
  14. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008 ; 371 : 569–578. [CrossRef] [PubMed]
  15. Sermage-Faure C, Laurier D, Goujon-Bellec S, et al. Childhood leukemia around French nuclear power plants. The geocap study, 2002–2007. Int J Cancer 2012 ; doi: 10.1002/ijc.27425.
  16. Zanzonico PB, Becker DV. Effects of time of administration and dietary iodine levels on potassium iodide (KI) blockade of thyroid irradiation by 131I from radioactive fallout. Health Phys 2000 ; 78 : 660–667. [CrossRef] [PubMed]
  17. Loi sur la transparence et la sécurité en matière nucléaire. Loi n° 2006–686 du 13 juin 2006. JO 14 juin 2006 ; 136.
  18. Le Guen B, Stricker L, Schlumberger M., Prophylaxis of thyroid exposure in case of nuclear power plant accident. Experience with the French distribution of KI pills. Nat Clin Pract Endocrinol Metab 2007 ; 3 : 611. [CrossRef] [PubMed]
  19. Perkel VS, Gail MH, Lubin J, et al. Radiation-induced thyroid neoplasms: evidence for familial susceptibility factors. J Clin Endocrinol Metab 1988 ; 66 : 1316–1322. [CrossRef] [PubMed]
  20. Adjadj E, Schlumberger M, de Vathaire F. Germ-line DNA polymorphisms and susceptibility to differentiated thyroid cancer. Lancet Oncol 2009 ; 10 : 181–190. [CrossRef] [PubMed]
  21. Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene 2009 ; 27 : S9–18. [CrossRef]
  22. Ameziane-El-Hassani R, Boufraqech M, Lagente-Chevallier O, et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res 2010 ; 70 : 4123–4132. [CrossRef] [PubMed]
  23. Sassolas G, Hafdi-Nejjari Z, Ferraro A, et al. Oncogenic alterations in papillary thyroid cancers of young patients. Thyroid 2012 ; 22 : 17–26. [CrossRef] [PubMed]
  24. Ory C, Ugolin N, Levalois C, et al. Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr Relat Cancer 2011 ; 18 : 193–206. [CrossRef] [PubMed]
  25. Ory C, Ugolin N, Schlumberger M, et al. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination. Genes 2012 ; 3 : 19–34. [CrossRef]
  26. Detours V, Delys L, Libert F, et al. Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers. Br J Cancer 2007 ; 97 : 818–825. [CrossRef] [PubMed]
  27. Port M, Boltze C, Wang Y, et al. A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Radiat Res 2007 ; 168 : 639–649. [CrossRef] [PubMed]
  28. Stein L, Rothschild J, Luce J, et al. Copy number and gene expression alterations in radiation-induced papillary thyroid carcinoma from Chernobyl pediatric patients. Thyroid 2010 ; 20 : 475–487. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.