Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 11, Novembre 2011
Page(s) 1028 - 1034
Section Prix Nobel 2011
DOI https://doi.org/10.1051/medsci/20112711022
Publié en ligne 30 novembre 2011
  1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice: morphology, quantitation, tissue distribution. J Exp Med 1973 ; 137 : 1142–1162. [CrossRef] [PubMed] [Google Scholar]
  2. Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 1978 ; 75 : 5132–5136. [CrossRef] [Google Scholar]
  3. Nussenzweig MC, Steinman RM, Unkeless JC, et al. Studies of the cell surface of mouse dendritic cells and other leukocytes. J Exp Med 1981 ; 154 : 168–187. [CrossRef] [PubMed] [Google Scholar]
  4. Steinman RM. Dendritic cells: understanding immunogenicity. Eur J Immunol 2007 ; 37 : S53–S60. [CrossRef] [PubMed] [Google Scholar]
  5. Nussenzweig MC, Steinman RM, Witmer MD, Gutchinov B. A monoclonal antibody specific for mouse dendritic cells. Proc Natl Acad Sci USA 1982 ; 79 : 161–165. [CrossRef] [Google Scholar]
  6. Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982 ; 155 : 31–41. [CrossRef] [PubMed] [Google Scholar]
  7. Faustman DL, Steinman RM, Gebel HM, et al. Prevention of rejection of murine islet allografts by pretreatment with anti-dendritic cell antibody. Proc Natl Acad Sci USA 1984 ; 81 : 3864–3868. [CrossRef] [Google Scholar]
  8. Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 1983 ; 157 : 613–627. [CrossRef] [PubMed] [Google Scholar]
  9. Nussenzweig MC, Steinman RM, Gutchinov B, Cohn ZA. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J Exp Med 1980 ; 152 : 1070–1084. [CrossRef] [PubMed] [Google Scholar]
  10. Inaba K, Steinman RM. Protein-specific helper T lymphocyte formation initiated by dendritic cells. Science 1985 ; 229 : 475–479. [CrossRef] [PubMed] [Google Scholar]
  11. Crowley M, Inaba K, Steinman RM. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J Exp Med 1990 ; 172 : 383–386. [CrossRef] [PubMed] [Google Scholar]
  12. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHCrestricted T cells in situ. J Exp Med 1990 ; 172 : 631–640. [CrossRef] [PubMed] [Google Scholar]
  13. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007 ; 449 : 419–426. [CrossRef] [PubMed] [Google Scholar]
  14. Janeway CAJr.. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989 ; 54 : 1–13. [CrossRef] [Google Scholar]
  15. Matzinger P. Tolerance, danger, and the extended family. Annual Rev Immunol 1994 ; 12 : 991–1045. [CrossRef] [PubMed] [Google Scholar]
  16. Inaba K, Young JW, Steinman RM. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987 ; 166 : 182–194. [CrossRef] [PubMed] [Google Scholar]
  17. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 2005 ; 23 : 975–1028. [CrossRef] [PubMed] [Google Scholar]
  18. Bar-On L, Jung S. Defining dendritic cells by conditional and constitutive cell ablation. Immunol Rev 2010 ; 234 : 76–89. [CrossRef] [PubMed] [Google Scholar]
  19. Jung S, Unutmaz D, Wong P, et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002 ; 17 : 211–220. [CrossRef] [PubMed] [Google Scholar]
  20. Fernandez NC, Lozier A, Flament C, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999 ; 5 : 405–411. [CrossRef] [PubMed] [Google Scholar]
  21. Ikarashi Y, Mikami R, Bendelac A, et al. Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition: critical role for B7 in CD1d-dependent NKT cell interferon gamma production. J Exp Med 2001 ; 194 : 1179–1186. [CrossRef] [PubMed] [Google Scholar]
  22. Ferlazzo G, Tsang ML, Moretta L, et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the nkp30 receptor by activated NK cells. J Exp Med 2002 ; 195 : 343–351. [CrossRef] [PubMed] [Google Scholar]
  23. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002 ; 2 : 151–161. [CrossRef] [PubMed] [Google Scholar]
  24. Hoeffel G, Ripoche AC, Matheoud D, et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 2007 ; 27 : 481–492. [CrossRef] [PubMed] [Google Scholar]
  25. Ginhoux F, Liu K, Helft J, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 2009 ; 206 : 3115–3130. [CrossRef] [PubMed] [Google Scholar]
  26. Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science 2010 ; 327 : 656–661. [CrossRef] [PubMed] [Google Scholar]
  27. Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 2007 ; 204 : 171–180. [CrossRef] [PubMed] [Google Scholar]
  28. Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995 ; 375 : 151–155. [CrossRef] [PubMed] [Google Scholar]
  29. Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002 ; 196 : 1627–1638. [CrossRef] [PubMed] [Google Scholar]
  30. Liu K, Iyoda T, Saternus M, et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 2002 ; 196 : 1091–1097. [CrossRef] [PubMed] [Google Scholar]
  31. Watanabe N, Wang YH, Lee HK, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005 ; 436 : 1181–1185. [CrossRef] [PubMed] [Google Scholar]
  32. Luo X, Tarbell KV, Yang H, et al. Dendritic cells with TGF-beta1 differentiate naive CD4+CD25–T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2007 ; 104 : 2821–2826. [CrossRef] [Google Scholar]
  33. Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25+ CD4+ regulatory Tcells by antigen processing dendritic cells. J Exp Med 2003 ; 198 : 235–247. [CrossRef] [PubMed] [Google Scholar]
  34. Ghiringhelli F, Puig PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005 ; 202 : 919–929. [CrossRef] [PubMed] [Google Scholar]
  35. Kool M, Lambrecht BN. Dendritic cells in asthma and COPD: opportunities for drug development. Curr Opin Immunol 2007 ; 19 : 701–710. [CrossRef] [PubMed] [Google Scholar]
  36. Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011 ; 365 : 127–138. [CrossRef] [PubMed] [Google Scholar]
  37. Hildner K, Edelson BT, Purtha WE, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008 ; 322 : 1097–1100. [CrossRef] [PubMed] [Google Scholar]
  38. Stary G, Bangert C, Tauber M, et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 2007 ; 204 : 1441–1451. [CrossRef] [PubMed] [Google Scholar]
  39. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998 ; 392 : 86–89. [CrossRef] [PubMed] [Google Scholar]
  40. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007 ; 13 : 1050–1059. [CrossRef] [PubMed] [Google Scholar]
  41. Dhodapkar M, Steinman RM, Sapp M, et al. Rapid generation of broad T-cell immunity in humans after single injection of mature dendritic cells. J Clin Invest 1999 ; 104 : 173–180. [CrossRef] [PubMed] [Google Scholar]
  42. Dhodapkar MV, Bhardwaj N. Active immunization of humans with dendritic cells. J Clin Immunol 2000 ; 20 : 167–174. [CrossRef] [PubMed] [Google Scholar]
  43. Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996 ; 183 : 87–97. [CrossRef] [PubMed] [Google Scholar]
  44. Cheever MA, Higano CS. Provenge (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011 ; 17 : 3520–3526. [CrossRef] [PubMed] [Google Scholar]
  45. Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002 ; 196 : 1627–1638. [CrossRef] [PubMed] [Google Scholar]
  46. Bozzacco L, Trumpfheller C, Siegal FP, et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 2007 ; 104 : 1289–1294. [CrossRef] [Google Scholar]
  47. Nchinda G, Kuroiwa J, Oks M, et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 2008 ; 118 : 1427–1432. [CrossRef] [PubMed] [Google Scholar]
  48. Bashyam H. Ralph Steinman: dendritic cells bring home the Lasker. J Exp Med 2007 ; 204 : 2245–2248. [CrossRef] [PubMed] [Google Scholar]
  49. Lotteau V. Prix Nobel de Médecine 1996 : Peter C. Doherty et Rolf M. Zinkernagel. La restriction de la réponse immunitaire par le complexe majeur d’histocompatibilité. Med Sci (Paris) 1996 ; 12 : 1316–1318. [CrossRef] [Google Scholar]
  50. Mukherjee S. The Emperor of all maladies: a biography of cancer. New York : Scribner, 2010 : 592 p. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.