Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 8-9, Août–Septembre 2011
Page(s) 753 - 762
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011278018
Publié en ligne 31 août 2011
  1. Javois LC. Immunocytochemical methods and protocols (methods in molecular biology). Totowa, New Jersey : Humana Press, 1999 : vol. 115, 466 p.
  2. Sullivan KF. Fluorescent proteins (methods in cell biology). Oxford : Academic Press, 2008 : vol. 85, 660 p.
  3. McNally JG, Karpova T, Cooper J, Conchello JA. Three-dimensional imaging by deconvolution microscopy. Methods 1999 ; 19 : 373-385. [CrossRef] [PubMed]
  4. Pawley JB. Handbook of biological confocal microscopy. New York : Springer Science-Business Media, LLC, 2006 : 988 p.
  5. Dufour P, Dufour S, Castonguay A, et al. Microscopie à deux photons pour l’imagerie cellulaire fonctionnelle : avantages et enjeux ou « un photon c’est bien… mais deux c’est mieux ! ». Med Sci (Paris) 2006 ; 22 : 837-844. [CrossRef] [EDP Sciences] [PubMed]
  6. Débarre D, Pena AM, Supatto W, et al. Microscopies multiharmoniques pour l’imagerie structurale de tissus intacts. Med Sci (Paris) 2006 ; 22 : 845-850. [CrossRef] [EDP Sciences] [PubMed]
  7. Wimmer VC, Möller A. High-resolution confocal imaging in tissue. In : Hewitson TDD, Darby IAA, eds. Histology protocols (methods in molecular biology). Totowa, New Jersey : Humana Press, 2010 : vol. 611, 183-191.
  8. Tanaami T, Otsuki S, Tomosada N, et al. High-speed 1-frame/ms scanning confocal microscope with a microlens and nipkow disks. Appl Opt 2002 ; 41 : 4704-4708. [CrossRef] [PubMed]
  9. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990 ; 248 : 73-76. [CrossRef] [PubMed]
  10. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005 ; 2 : 932-940. [CrossRef] [PubMed]
  11. De AK, Goswami D. Exploring the nature of photo-damage in two-photon excitation by fluorescence intensity modulation. J Fluoresc 2009 ; 19 : 381-386. [CrossRef] [PubMed]
  12. Boot MJ, Westerberg CH, Sanz-Ezquerro J, et al. In vitro whole-organ imaging : 4D quantification of growing mouse limb buds. Nat Methods 2008 ; 5 : 609-612. [CrossRef] [PubMed]
  13. Bouma BE, Yun SH, Vakoc BJ, et al. Fourier-domain optical coherence tomography : recent advances toward clinical utility. Curr Opin Biotechnol 2009 ; 20 : 111-118. [CrossRef] [PubMed]
  14. Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem 2009 ; 78 : 993-1016. [CrossRef] [PubMed]
  15. Stelzer E, Lindek S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 1994 ; 111 : 536-547. [CrossRef]
  16. Greger K, Swoger J, Stelzer EHK. Basic building units, properties of a fluorescence single plane illumination microscope. Rev Sci Instrum 2007 ; 78 : 023705. [CrossRef] [PubMed]
  17. Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Development 2009 ; 136 : 1963-1975. [CrossRef] [PubMed]
  18. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008 ; 322 : 1065-1069. [CrossRef] [PubMed]
  19. Keller PJ, Schmidt AD, Santella A, et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 2010 ; 7 : 637-642. [CrossRef] [PubMed]
  20. Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004 ; 305 : 1007-1009. [CrossRef] [PubMed]
  21. Keller PJ, Pampaloni F, Stelzer EHK. Life sciences require the third dimension. Curr Opin Cell Biol 2006 ; 18 : 117-124. [CrossRef] [PubMed]
  22. Huisken J, Stainier DY. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 2007 ; 32 : 2608-2610. [CrossRef] [PubMed]
  23. Becker K, Jährling N, Kramer ER, et al. Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 2008 ; 1 : 36-42. [CrossRef] [PubMed]
  24. Swoger J, Verveer P, Greger K, et al. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express 2007 ; 15 : 8029-8042. [CrossRef] [PubMed]
  25. Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 2010 ; 7 : 418-9.http://pacific.mpi-cbg.de/wiki/index.php/SPIM_Registration_Method. [CrossRef] [PubMed]
  26. Verveer PJ, Swoger J, Pampaloni F, et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 2007 ; 4 : 311-313. [PubMed]
  27. Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 2007 ; 8 : 839-845. [CrossRef] [PubMed]
  28. Engelbrecht CJ, Stelzer EHK. Resolution enhancement in a light-sheet-based microscope (SPIM). Opt Lett 2006 ; 31 : 1477-1479. [CrossRef] [PubMed]
  29. Scherz PJ, Huisken J, Sahai-Hernandez P, Stainier DYR. High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development 2008 ; 135 : 1179-1187. [CrossRef] [PubMed]
  30. Keller PJ, Pampaloni F, Stelzer EHK. Three-dimensional preparation and imaging reveal intrinsic microtubule properties. Nat Methods 2007 ; 4 : 843-846. [CrossRef] [PubMed]
  31. Siedentopf H, Zsigmondy R. Uber sichtbarmachung und grössenbestimmung ultramikroskopischer teilchen, mit besonderer anwendung auf goldrubingläser. Ann Phys 1903 ; 10 : 1-39.
  32. Voie AH, Burns DH, Spelman FA. Orthogonal-plane fluorescence optical sectioning : three-dimensional imaging of macroscopic biological specimens. J Microsc 1993 ; 170 : 229-236. [CrossRef] [PubMed]
  33. Holekamp TF, Turaga D, Holy TE. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 2008 ; 57 : 661-672. [CrossRef] [PubMed]
  34. Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 2008 ; 5 : 159-161. [CrossRef] [PubMed]
  35. Dunsby C. Optically sectioned imaging by oblique plane microscopy. Opt Express 2008 ; 16 : 20306-20316. [CrossRef] [PubMed]
  36. Breuninger T, Greger K, Stelzer EHK. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt Lett 2007 ; 32 : 1938-1940. [CrossRef] [PubMed]
  37. Engelbrecht CJ, Greger K, Reynaud EG, et al. Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). Opt Express 2007 ; 15 : 6420-6430. [CrossRef] [PubMed]
  38. Wohland T, Shi X, Sankaran J, Stelzer EHK. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 2010 ; 18 : 10627. [CrossRef] [PubMed]
  39. Palero J, Santos SI, Artigas D, Loza-Alvarez P. A simple scanless two-photon fluorescence microscope using selective plane illumination. Opt Express 2010 ; 18 : 8491. [CrossRef] [PubMed]
  40. Rohrbach A. Artifacts resulting from imaging in scattering media: a theoretical prediction. Opt Lett 2009 ; 34 : 3041-3043. [CrossRef] [PubMed]
  41. Izeddin I, Darzacq X, Dahan M. Microscopies cellulaires à l’échelle de la molécule individuelle. Med Sci (Paris) 2011 ; 27 : 547-555. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.