Imagerie et cognition
Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 1, Janvier 2011
Imagerie et cognition
Page(s) 82 - 87
Section M/S revues
DOI https://doi.org/10.1051/medsci/201127182
Publié en ligne 10 février 2011
  1. Jones AK, Brown WD, Friston KJ, et al. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Biol Sci 1991 ; 244 : 39-44. [CrossRef] [PubMed] [Google Scholar]
  2. Talbot JD, Marrett S, Evans AC, et al. Multiple representations of pain in human cerebral cortex. Science 1991 ; 251 : 1355-1358. [CrossRef] [PubMed] [Google Scholar]
  3. Garcia-Larrea L, Peyron R, Laurent B, Mauguiere F. Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 1997 ; 8 : 3785-3789. [CrossRef] [PubMed] [Google Scholar]
  4. Peyron R, Garcia-Larrea L, Gregoire MC, et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999 ; 122 : 1765-1780. [CrossRef] [PubMed] [Google Scholar]
  5. Frankenstein UN, Richter W, McIntyre MC, Remy F. Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage 2001 ; 14 : 827-836. [CrossRef] [PubMed] [Google Scholar]
  6. Valet M, Sprenger T, Boecker H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain: an fMRI analysis. Pain 2004 ; 109 : 399-408. [CrossRef] [PubMed] [Google Scholar]
  7. Legrain V, Perchet C, Garcia-Larrea L. Involuntary orienting of attention to nociceptive events: neural and behavioral signatures. J Neurophysiol 2009 ; 102 : 2423-2434. [CrossRef] [PubMed] [Google Scholar]
  8. Peyron R, Kupers R, Jehl JL, et al. Central representation of the RIII flexion reflex associated with overt motor reaction: an fMRI study. Neurophysiol Clin 2007 ; 37 : 249-259. [CrossRef] [PubMed] [Google Scholar]
  9. Frot M, Magnin M, Mauguière F, Garcia-Larrea L. On SI responses to painful laser and non-painful electrical stimuli: an intracortical recording study. Glasgow : 12th World Congress on Pain, 2008 : PF134 (poster). [Google Scholar]
  10. Ploghaus A, Narain C, Beckmann CF, et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 2001 ; 21 : 9896-9903. [PubMed] [Google Scholar]
  11. Peyron R, Créac’h C, Vinson J, et al. Réponses cérébrales à la stimulation laser en IRMf et réponses anticipatoires à cette même stimulation. Rev Neurol 2007 ; 163 (suppl 1) : 8-11. [CrossRef] [Google Scholar]
  12. Godinho F, Magnin M, Frot M, et al. Emotional modulation of pain: is it the sensation or what we recall?. J Neurosci 2006 ; 26 : 11454-11461. [CrossRef] [PubMed] [Google Scholar]
  13. Bingel U, Schoell E, Herken W, et al. Habituation to painful stimulation involves the antinociceptive system. Pain 2007 ; 131 : 21-30. [CrossRef] [PubMed] [Google Scholar]
  14. Craig AD, Reiman EM, Evans A, Bushnell MC. Functional imaging of an illusion of pain. Nature 1996 ; 384 : 258-260. [CrossRef] [PubMed] [Google Scholar]
  15. Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997 ; 277 : 968-971. [CrossRef] [PubMed] [Google Scholar]
  16. Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta- analysis. Neurophysiol Clin 2000 ; 30 : 263-288. [CrossRef] [PubMed] [Google Scholar]
  17. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005 ; 9 : 463-484. [CrossRef] [PubMed] [Google Scholar]
  18. Botvinick M, Jha AP, Bylsma LM, et al. Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 2005 ; 25 : 312-319. [CrossRef] [PubMed] [Google Scholar]
  19. Jackson PL, Brunet E, Meltzoff AN, Decety J. Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 2006 ; 44 : 752-761. [CrossRef] [PubMed] [Google Scholar]
  20. Saarela MV, Hlushchuk Y, Williams AC, et al. The compassionate brain: humans detect intensity of pain from another’s face. Cereb Cortex 2007 ; 17 : 230-237. [CrossRef] [PubMed] [Google Scholar]
  21. Singer T, Seymour B, O’Doherty J, et al. Empathy for pain involves the affective but not sensory components of pain. Science 2004 ; 303 : 1157-1162. [CrossRef] [PubMed] [Google Scholar]
  22. Isnard J, Guenot M, Ostrowsky K, et al. The role of the insular cortex in temporal lobe epilepsy. Ann Neurol 2000 ; 48 : 614-623. [CrossRef] [PubMed] [Google Scholar]
  23. Mazzola L, Isnard J, Peyron R, et al. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009 ; 146 : 99-104. [CrossRef] [PubMed] [Google Scholar]
  24. Frot M, Mauguiere F, Magnin M, Garcia-Larrea L. Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 2008 ; 28 : 944-952. [CrossRef] [PubMed] [Google Scholar]
  25. Frot M, Rambaud L, Guenot M, Mauguiere F. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin Neurophysiol 1999 ; 110 : 133-145. [CrossRef] [PubMed] [Google Scholar]
  26. Frot M, Mauguiere F. Dual representation of pain in the operculo-insular cortex in humans. Brain 2003 ; 126 : 438-450. [CrossRef] [PubMed] [Google Scholar]
  27. Frot M, Magnin M, Mauguiere F, Garcia Larrea L. Human SII and posterior insula differently encode thermal stimuli. Cereb Cortex 2007 ; 17 : 610-620. [CrossRef] [PubMed] [Google Scholar]
  28. Peyron R, García-Larrea L, Grégoire MC, et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 2000 ; 84 : 77-87. [CrossRef] [PubMed] [Google Scholar]
  29. Peyron R, Schneider F, Faillenot I, et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 2004 ; 63 : 1838-1846. [CrossRef] [PubMed] [Google Scholar]
  30. Ducreux D, Attal N, Parker F, Bouhassira D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 2006 ; 129 : 963-976. [CrossRef] [PubMed] [Google Scholar]
  31. Peyron R, García-Larrea L, Grégoire MC, et al. Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 1998 ; 121 : 345-356. [CrossRef] [PubMed] [Google Scholar]
  32. Helmchen C, Lindig M, Petersen D, Tronnier V. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain 2002 ; 98 : 325-330. [CrossRef] [PubMed] [Google Scholar]
  33. Daniele O, Fierro B, Brighina F, et al. Disappearance of haemorrhagic stroke-induced thalamic (central) pain following a further (contralateral ischaemic) stroke. Funct Neurol 2003 ; 18 : 95-96. [PubMed] [Google Scholar]
  34. Cauda F, Sacco K, D’Agata F, et al. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neuroscience 2009 ; 10 : 138. [CrossRef] [PubMed] [Google Scholar]
  35. Willoch F, Schindler F, Wester HJ, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004 ; 108 : 213-220. [CrossRef] [PubMed] [Google Scholar]
  36. Maarrawi J, Peyron R, Mertens P, et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007 ; 127 : 183-194. [CrossRef] [PubMed] [Google Scholar]
  37. Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 2009 ; 66 : 375-390. [CrossRef] [PubMed] [Google Scholar]
  38. Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology 2008 ; 23 : 371-380. [CrossRef] [Google Scholar]
  39. Zambreanu L, Wise RG, Brooks JC, et al. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005 ; 114 : 397-407. [CrossRef] [PubMed] [Google Scholar]
  40. Gwilym SE, Keltner JR, Warnaby CE, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum 2009 ; 61 : 1226-1234. [CrossRef] [PubMed] [Google Scholar]
  41. Bantick SJ, Wise RG, Ploghaus A, et al. Imaging how attention modulates pain in humans using functional MRI. Brain 2002 ; 125 : 310-319. [CrossRef] [PubMed] [Google Scholar]
  42. Kupers R, Faymonville ME, Laureys S. The cognitive modulation of pain: hypnosis- and placebo-induced analgesia. Prog Brain Res 2005 ; 150 : 251-269. [CrossRef] [PubMed] [Google Scholar]
  43. Casey KL, Svensson P, Morrow TJ, et al. Selective opiate modulation of nociceptive processing in the human brain. J Neurophysiol 2000 ; 84 : 525-533. [PubMed] [Google Scholar]
  44. Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia- imaging a shared neuronal network. Science 2002 ; 295 : 1737-1740. [CrossRef] [PubMed] [Google Scholar]
  45. Bingel U, Lorenz J, Gläscher J, et al. Cognitive control of pain: a common system for pain expectation and placebo analgesia: a single trial fMRI study. In : 10th Annual meeting of the organization for human brain mapping. Budapest, Hongrie : HBM, 13-17 juin 2004, TU 202 (poster). [Google Scholar]
  46. García-Larrea L, Peyron R.. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms. Neuroimage 2007 ; 37 (suppl 1) : S71-S79. [CrossRef] [PubMed] [Google Scholar]
  47. Peyron R, García-Larrea L, Deiber MP, et al. Electrical stimulation of precentral cortical area in the treatment of central pain: electrophysiological and PET study. Pain 1995 ; 62 : 275-286. [CrossRef] [PubMed] [Google Scholar]
  48. García-Larrea L, Peyron R, Mertens P, et al. Electrical stimulation of motor cortex for pain control: a combined PET- scan and electrophysiological study. Pain 1999 ; 83 : 259-273. [CrossRef] [PubMed] [Google Scholar]
  49. Peyron R, Faillenot I, Mertens P, et al. Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 2007 ; 34 : 310-321. [CrossRef] [PubMed] [Google Scholar]
  50. Nuti C, Peyron R, García-Larrea L, et al. Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy. Pain 2005 ; 118 : 43-52. [CrossRef] [PubMed] [Google Scholar]
  51. Maarrawi J, Peyron R, Mertens P, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 2007 ; 69 : 827-834. [CrossRef] [PubMed] [Google Scholar]
  52. Peyron R, Frot M, Schneider F, et al. Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 2002 ; 17 : 1336-1346. [CrossRef] [PubMed] [Google Scholar]
  53. Coatrieux JL, Velut J, Dillenseger JL, Toumoulin C. De l’imagerie médicale à la thérapie guidée par l’image. Med Sci 2010 ; 26 : 1103-1110. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.