Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 3, Mars 2010
Page(s) 267 - 272
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010263267
Publié en ligne 15 mars 2010
  1. Lejeune J, Gautier M, Turpin R. Study of somatic chromosomes from 9 mongoloid children. CR Hebd Seances Acad Sci 1959; 248 : 1721–2. [Google Scholar]
  2. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001; 2 : 280–91. [Google Scholar]
  3. Antonarakis SE. Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down syndrome collaborative group. N Engl J Med 1991; 324 : 872–6. [Google Scholar]
  4. Savage AR, Petersen MB, Pettay D, et al. Elucidating the mechanisms of paternal non-disjunction of chromosome 21 in humans. Hum Mol Genet 1998; 7 : 1221–7. [Google Scholar]
  5. Lamb NE, Feingold E, Savage A, et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet 1997; 6 : 1391–9. [Google Scholar]
  6. Warren AC, Chakravarti A, Wong C, et al. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science 1987; 237 : 652–4. [Google Scholar]
  7. Lamb NE, Freeman SB, Savage-Austin A, et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 1996; 14 : 400–5. [Google Scholar]
  8. Antonarakis SE, Avramopoulos D, Blouin JL, Talbot CC Jr, Schinzel AA. Mitotic errors in somatic cells cause trisomy 21 in about 4.5% of cases and are not associated with advanced maternal age. Nat Genet 1993; 3 : 146–50. [Google Scholar]
  9. Warburton D. Biological aging and the etiology of aneuploidy. Cytogenet Genome Res 2005; 111 : 266–72. [Google Scholar]
  10. Pellestor F, Anahory T, Hamamah S. Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet Genome Res 2005; 111 : 206–12. [Google Scholar]
  11. Allen EG, Freeman SB, Druschel C, et al. Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunction: a report from the Atlanta and National Down Syndrome Projects. Hum Genet 2009; 125 : 41–52. [Google Scholar]
  12. Oliver TR, Feingold E, Yu K, et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet 2008; 4 : e1000033. [Google Scholar]
  13. Hodges RJ, Wallace EM. Testing for Down syndrome in the older woman: a risky business ? Aust NZ J Obstet Gynaecol 2005; 45 : 486–8. [Google Scholar]
  14. Epstein CJ, Korenberg JR, Anneren G, et al. Protocols to establish genotype-phenotype correlations in Down syndrome. Am J Hum Genet 1991; 49 : 207–35. [Google Scholar]
  15. Gardiner K, Fortna A, Bechtel L, Davisson MT. Mouse models of Down syndrome: how useful can they be ? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene 2003; 318 : 137–47. [Google Scholar]
  16. Davisson MT, Schmidt C, Akeson EC. Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog Clin Biol Res 1990; 360 : 263–80. [Google Scholar]
  17. Sago H, Carlson EJ, Smith DJ, et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 1998; 95 : 6256–61. [Google Scholar]
  18. Shinohara T, Tomizuka K, Miyabara S, et al. Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum Mol Genet 2001; 10 : 1163–75. [Google Scholar]
  19. Tan YH, Tischfield J, Ruddle FH. The linkage of genes for the human interferon-induced antiviral protein and indophenol oxidase-B traits to chromosome G-21. J Exp Med 1973; 137 : 317–30. [Google Scholar]
  20. Hattori M, Fujiyama A, Taylor TD, et al. The DNA sequence of human chromosome 21. Nature 2000; 405 : 311–9. [Google Scholar]
  21. Gardiner K, Costa AC. The proteins of human chromosome 21. Am J Med Genet C Semin Med Genet 2006; 142C : 196–205. [Google Scholar]
  22. Dermitzakis ET, Reymond A, Lyle R, et al. Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 2002; 420 : 578–82. [Google Scholar]
  23. Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 2008; 370 : 473–7. [Google Scholar]
  24. Reymond A, Marigo V, Yaylaoglu MB, et al. Human chromosome 21 gene expression atlas in the mouse. Nature 2002; 420 : 582–6. [Google Scholar]
  25. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004; 5 : 725–38. [Google Scholar]
  26. Rachidi M, Lopes C. Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways. Eur J Paediatr Neurol 2008; 12 : 168–82. [Google Scholar]
  27. Ait Yahya-Graison E, Aubert J, Dauphinot L, et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 2007; 81 : 475–91. [Google Scholar]
  28. Prandini P, Deutsch S, Lyle R, et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet 2007; 81 : 252–63. [Google Scholar]
  29. FitzPatrick DR. Transcriptional consequences of autosomal trisomy: primary gene dosage with complex downstream effects. Trends Genet 2005; 21 : 249–53. [Google Scholar]
  30. Mao R, Zielke CL, Zielke HR, Pevsner J. Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 2003; 81 : 457–67. [Google Scholar]
  31. Delabar JM, Theophile D, Rahmani Z, et al. Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Hum Genet 1993; 1 : 114–24. [Google Scholar]
  32. Korenberg JR. Molecular mapping of the Down syndrome phenotype. Prog Clin Biol Res 1990; 360 : 105–15. [Google Scholar]
  33. Rahmani Z, Blouin JL, Creau-Goldberg N, et al. Down syndrome critical region around D21S55 on proximal 21q22.3. Am J Med Genet 1990; 7 (suppl) : 98–103. [Google Scholar]
  34. Ronan A, Fagan K, Christie L, et al. Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet 2007; 44 : 448–51. [Google Scholar]
  35. Korenberg JR, Chen XN, Schipper R, et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 1994; 91 : 4997–5001. [Google Scholar]
  36. Shapiro BL. The Down syndrome critical region. J Neural Transm 1999; 57 (suppl) : 41–60. [Google Scholar]
  37. Olson LE, Richtsmeier JT, Leszl J, Reeves RH. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 2004; 306 : 687–90. [Google Scholar]
  38. Olson LE, Roper RJ, Sengstaken CL, et al. Trisomy for the Down syndrome “critical region“ is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet 2007; 16 : 774–82. [Google Scholar]
  39. Lyle R, Gehrig C, Neergaard-Henrichsen C, Deutsch S, Antonarakis SE: Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. Genome Res 2004; 14 : 1268–74. [Google Scholar]
  40. Korbel JO, Tirosh-Wagner T, Urban AE, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA 2009; 106 : 12031–6. [Google Scholar]
  41. Reeves RH, Baxter LL, Richtsmeier JT. Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet 2001; 17 : 83–8. [Google Scholar]
  42. Crispino JD. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer 2005; 44 : 40–4. [Google Scholar]
  43. Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol 2001; 2 : 429–36. [Google Scholar]
  44. Guidi S, Bonasoni P, Ceccarelli C, et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol 2008; 18 : 180–97. [Google Scholar]
  45. Lorenzi HA, Reeves RH. Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res 2006; 1104 : 153–9. [Google Scholar]
  46. Arron JR, Winslow MM, Polleri A, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 2006; 441 : 595–600. [Google Scholar]
  47. Canzonetta C, Mulligan C, Deutsch S, et al. DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. Am J Hum Genet 2008; 83 : 388–400. [Google Scholar]
  48. Fernandez F, Morishita W, Zuniga E, et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 2007; 10 : 411–3. [Google Scholar]
  49. Costa AC, Scott-McKean JJ, Stasko MR. Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 2008; 33 : 1624–32. [Google Scholar]
  50. Guedj F, Sebrie C, Rivals I, et al. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 2009; 4 : e4606. [Google Scholar]
  51. Turleau C, Vekemans M. Nouvelles données en génétique chromosomique. Med Sci (Paris) 2005; 21 : 940–6. [Google Scholar]
  52. Terret ME, Wassmann K. Le point faible méiotique : la première division. Med Sci (Paris) 2008; 24 : 197–203. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.