Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 2, Février 2010
Page(s) 159 - 164
Section M/S revues
DOI https://doi.org/10.1051/medsci/2010262159
Publié en ligne 15 février 2010
  1. Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983; 220 : 868–71.
  2. Medzhitov R, Littman D. HIV immunology needs a new direction. Nature 2008; 455 : 591.
  3. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS clinical trials group 320 study team. N Engl J Med 1997; 337 : 725–33.
  4. Perelson AS, Essunger P, Cao Y, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997; 387 : 188–91.
  5. Chun TW, Finzi D, Margolick J, et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1995; 1 : 1284–90.
  6. Piatak M Jr, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993; 259 : 1749–54.
  7. Chun TW, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997; 387 : 183–8.
  8. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278 : 1295–300.
  9. Wong JK, Hezareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997; 278 : 1291–5.
  10. Bailey JR, Sedaghat AR, Kieffer T, et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol 2006; 80 : 6441–57.
  11. Barber SA, Gama L, Dudaronek JM, et al. Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus-macaque model. J Infect Dis 2006; 193 : 963–70.
  12. Keele BF, Tazi L, Gartner S, et al. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J Virol 2008; 82 : 5548–61.
  13. Zack JA, Arrigo SJ, Weitsman SR, et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61 : 213–22.
  14. Haase AT, Henry K, Zupancic M, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996; 274 : 985–9.
  15. Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA. HIV-1 replication is controlled at the level of T cell activation and proviral integration. Embo J 1990; 9 : 1551–60.
  16. Han Y, Lassen K, Monie D, et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 2004; 78 : 6122–33.
  17. Lassen K, Han Y, Zhou Y, et al. The multifactorial nature of HIV-1 latency. Trends Mol Med 2004; 10 : 525–31.
  18. Lenasi T, Contreras X, Peterlin BM. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 2008; 4 : 123–33.
  19. Van Lint C. Role of chromatin in HIV-1 transcriptional regulation. Adv Pharmacol 2000; 48 : 121–60.
  20. Wurtele H, Li Q, Zhou H, et al. L’acétylation des histones : un nouveau maillon de la chaîne d’assemblage du nucléosome. Med Sci (Paris) 2009; 25 : 121–2.
  21. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004; 14 : R546–51.
  22. Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39 : 63–74.
  23. Du Chene I, Basyuk E, Lin YL, et al. Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. Embo J 2007; 26 : 424–35.
  24. Marban C, Suzanne S, Dequiedt F, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. Embo J 2007; 26 : 412–23.
  25. Rohr O, Lecestre D, Chasserot-Golaz S, et al. Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells. J Virol 2003; 77 : 5415–27.
  26. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128 : 707–19.
  27. Nelson DE, Ihekwaba AE, Elliott M, et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306 : 704–8.
  28. Weinberger LS, Burnett JC, Toettcher JE, et al. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 2005; 122 : 169–82.
  29. Weinberger LS, Dar RD, Simpson ML. Transient-mediated fate determination in a transcriptional circuit of HIV. Nat Genet 2008; 40 : 466–70.
  30. Pearson R, Kim YK, Hokello J, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. J Virol 2008; 82 : 12291–303.
  31. Bertin A, Mangenot S. Structure et dynamique de la particule cœur du nucléosome. Med Sci (Paris) 2008; 24 : 715–9.
  32. Estaquier J, Hurtrel B. Sanctuaire du virus de l’immunodéficience humaine et mécanismes d’échappement. Med Sci (Paris) 2008; 24 : 1055–60.
  33. Ray-Gallet D, Gérard A, Polo S, Almouzni G. Variations sur le thème du code histone. Med Sci (Paris) 2005; 21 : 384–9.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.