Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 1, Janvier 2009
Page(s) 69 - 76
Section M/S revues
DOI https://doi.org/10.1051/medsci/200925169
Publié en ligne 15 janvier 2009
  1. Dez C, Tollervey D. Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 2004; 7 : 631–7.
  2. Liu JM, Ellis SR. Ribosomes and marrow failure: coincidental association or molecular paradigm ? Blood 2006; 107 : 4583–8.
  3. Chen S, Warszawski J, Bader-Meunier B, et al. Diamond-blackfan anemia and growth status: the French registry. J Pediatr 2005; 147 : 669–73.
  4. Leblanc T, Gluckman E, Brauner R. Growth hormone deficiency caused by pituitary stalk interruption in Diamond-Blackfan anemia. J Pediatr 2003; 142 : 358.
  5. Willig TN, Gazda H, Sieff CA. Diamond-Blackfan anemia. Curr Opin Hematol 2000; 7 : 85–94.
  6. Lipton JM, Federman N, Khabbaze, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 2001; 23 : 39–44.
  7. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142 : 859–76.
  8. Ohene-Abuakwa Y, Orfali KA, Marius C, Ball SE. Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect. Blood 2005; 105 : 838–46.
  9. Bagnara GP, Zauli G, Vitale L, et al. In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-blackfan Anemia. Blood 1991; 78 : 10.
  10. Nathan DG, Clarke BJ, Hillman DG, et al. Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia. J Clin Invest 1978; 61 : 489–98.
  11. Casadevall N, Croisille L, Auffray I, et al. Age-related alterations in erythroid and granulopoietic progenitors in Diamond-Blackfan anaemia. Br J Haematol 1994; 87 : 369–75.
  12. Giri N, Kang E, Tisdale JF, et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol 2000; 108 : 167–75.
  13. Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999; 21 : 169–75.
  14. Hamaguchi I, Ooka A, Brun A, et al. Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. Blood 2002; 100 : 2724–31.
  15. Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 2006; 79 : 1110–8.
  16. Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rpl35A, in diamond-blackfan anemia. Blood 2008; 112 : 1582–92.
  17. Cmejla R, Cmejlova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 2007; 28 : 1178–82.
  18. Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83 : 769–80.
  19. Matsson H, Davey EJ, Draptchinskaia N, et al. Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. Mol Cell Biol 2004; 24 : 4032–7.
  20. Danilova N, Sakamoto K, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008; 112 : 5228–37.
  21. Hernandez-Verdun D, Louvet E. Le nucléole : structure, fonctions et maladies associées Med Sci (Paris) 2004; 20 : 37–44.
  22. Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J 2005; 24 : 2862–72.
  23. Léger-Silvestre I, Caffrey JM, Dawaliby R, et al. Specific role for yeast homologs of the Diamond-Blackfan anemia-associated Rps19 protein in ribosome synthesis. J Biol Chem 2005; 280 : 38177–85.
  24. Choesmel V, Bacqueville D, Rouquette J, et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2007; 109 : 1275–83.
  25. Flygare J, Aspesi A, Bailey JC, et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 2007; 109 : 980–6.
  26. Idol RA, Robledo S, Du HY, et al. Cells depleted for RPS19, a protein associated with Diamond-Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 2007; 39 : 35–43.
  27. Choesmel V, Fribourg S, Aguissa-Touré AH, et al. Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet 2008; 17 : 1253–63.
  28. Campagnoli MF, Ramenghi U, Armiraglio M, et al. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat 2008; 29 : 911–20.
  29. Gregory LA, Aguissa-Touré AH, Pinaud N, et al. Molecular basis of Diamond-Blackfan anemia: structure and function analysis of RPS19. Nucleic Acids Res 2007; 35 : 5913–21.
  30. Angelini M, Cannata S, Mercaldo V, et al. Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet 2007; 16 : 1720–7.
  31. Da Costa L, Tchernia G, Gascard P, et al. Nucleolar localization of RPS19 protein in normal cells and mislocalization due to mutations in the nucleolar localization signals in 2 Diamond-Blackfan anemia patients: potential insights into pathophysiology. Blood 2003; 101 : 5039–45.
  32. Crétien A, Hurtaud C, Moniz H, et al. Study of the effects of proteasome inhibitors on ribosomal protein S19 (RPS19) mutants, identified in Diamond-Blackfan anemia patients. Haematologica 2008; 93 : 1627–34.
  33. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21 : 4246–55.
  34. Sulic S, Panic L, Barkic M, et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev 2005; 19 : 3070–82.
  35. Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279 : 44475–82.
  36. Dai MS, Zeng SX, Jin Y, et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24 : 7654–68.
  37. Lohrum MA, Ludwig RL, Kubbutat MH, et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3 : 577–87.
  38. Dai MS, Arnold H, Sun XX, Sears R, Lu H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 2007; 26 : 3332–45.
  39. Carnero A, Hudson JD, Price CM, Beach DH. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2 : 148–55.
  40. Ayrault O, Andrique L, Larsen CJ, Séité P. La régulation négative de la biogenèse des ribosomes : une nouvelle voie de contrôle du cycle celullaire par le suppresseur de tumeur Arf ? Med Sci (Paris) 2006; 22 : 519–24.
  41. Olson MO. Sensing cellular stress: another new function for the nucleolus ? Sci STKE 2004; 2004 : pe10.
  42. Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003; 22 : 6068–77.
  43. Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451 : 335–9.
  44. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008; 24 : 390–8.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.