Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 1, Janvier 2009
Page(s) 69 - 76
Section M/S revues
DOI https://doi.org/10.1051/medsci/200925169
Publié en ligne 15 janvier 2009
  1. Dez C, Tollervey D. Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 2004; 7 : 631–7. [Google Scholar]
  2. Liu JM, Ellis SR. Ribosomes and marrow failure: coincidental association or molecular paradigm ? Blood 2006; 107 : 4583–8. [Google Scholar]
  3. Chen S, Warszawski J, Bader-Meunier B, et al. Diamond-blackfan anemia and growth status: the French registry. J Pediatr 2005; 147 : 669–73. [Google Scholar]
  4. Leblanc T, Gluckman E, Brauner R. Growth hormone deficiency caused by pituitary stalk interruption in Diamond-Blackfan anemia. J Pediatr 2003; 142 : 358. [Google Scholar]
  5. Willig TN, Gazda H, Sieff CA. Diamond-Blackfan anemia. Curr Opin Hematol 2000; 7 : 85–94. [Google Scholar]
  6. Lipton JM, Federman N, Khabbaze, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 2001; 23 : 39–44. [Google Scholar]
  7. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142 : 859–76. [Google Scholar]
  8. Ohene-Abuakwa Y, Orfali KA, Marius C, Ball SE. Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect. Blood 2005; 105 : 838–46. [Google Scholar]
  9. Bagnara GP, Zauli G, Vitale L, et al. In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-blackfan Anemia. Blood 1991; 78 : 10. [Google Scholar]
  10. Nathan DG, Clarke BJ, Hillman DG, et al. Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia. J Clin Invest 1978; 61 : 489–98. [Google Scholar]
  11. Casadevall N, Croisille L, Auffray I, et al. Age-related alterations in erythroid and granulopoietic progenitors in Diamond-Blackfan anaemia. Br J Haematol 1994; 87 : 369–75. [Google Scholar]
  12. Giri N, Kang E, Tisdale JF, et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol 2000; 108 : 167–75. [Google Scholar]
  13. Draptchinskaia N, Gustavsson P, Andersson B, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999; 21 : 169–75. [Google Scholar]
  14. Hamaguchi I, Ooka A, Brun A, et al. Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. Blood 2002; 100 : 2724–31. [Google Scholar]
  15. Gazda HT, Grabowska A, Merida-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 2006; 79 : 1110–8. [Google Scholar]
  16. Farrar JE, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rpl35A, in diamond-blackfan anemia. Blood 2008; 112 : 1582–92. [Google Scholar]
  17. Cmejla R, Cmejlova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 2007; 28 : 1178–82. [Google Scholar]
  18. Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83 : 769–80. [Google Scholar]
  19. Matsson H, Davey EJ, Draptchinskaia N, et al. Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. Mol Cell Biol 2004; 24 : 4032–7. [Google Scholar]
  20. Danilova N, Sakamoto K, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008; 112 : 5228–37. [Google Scholar]
  21. Hernandez-Verdun D, Louvet E. Le nucléole : structure, fonctions et maladies associées Med Sci (Paris) 2004; 20 : 37–44. [Google Scholar]
  22. Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J 2005; 24 : 2862–72. [Google Scholar]
  23. Léger-Silvestre I, Caffrey JM, Dawaliby R, et al. Specific role for yeast homologs of the Diamond-Blackfan anemia-associated Rps19 protein in ribosome synthesis. J Biol Chem 2005; 280 : 38177–85. [Google Scholar]
  24. Choesmel V, Bacqueville D, Rouquette J, et al. Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 2007; 109 : 1275–83. [Google Scholar]
  25. Flygare J, Aspesi A, Bailey JC, et al. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 2007; 109 : 980–6. [Google Scholar]
  26. Idol RA, Robledo S, Du HY, et al. Cells depleted for RPS19, a protein associated with Diamond-Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 2007; 39 : 35–43. [Google Scholar]
  27. Choesmel V, Fribourg S, Aguissa-Touré AH, et al. Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet 2008; 17 : 1253–63. [Google Scholar]
  28. Campagnoli MF, Ramenghi U, Armiraglio M, et al. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat 2008; 29 : 911–20. [Google Scholar]
  29. Gregory LA, Aguissa-Touré AH, Pinaud N, et al. Molecular basis of Diamond-Blackfan anemia: structure and function analysis of RPS19. Nucleic Acids Res 2007; 35 : 5913–21. [Google Scholar]
  30. Angelini M, Cannata S, Mercaldo V, et al. Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet 2007; 16 : 1720–7. [Google Scholar]
  31. Da Costa L, Tchernia G, Gascard P, et al. Nucleolar localization of RPS19 protein in normal cells and mislocalization due to mutations in the nucleolar localization signals in 2 Diamond-Blackfan anemia patients: potential insights into pathophysiology. Blood 2003; 101 : 5039–45. [Google Scholar]
  32. Crétien A, Hurtaud C, Moniz H, et al. Study of the effects of proteasome inhibitors on ribosomal protein S19 (RPS19) mutants, identified in Diamond-Blackfan anemia patients. Haematologica 2008; 93 : 1627–34. [Google Scholar]
  33. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21 : 4246–55. [Google Scholar]
  34. Sulic S, Panic L, Barkic M, et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev 2005; 19 : 3070–82. [Google Scholar]
  35. Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279 : 44475–82. [Google Scholar]
  36. Dai MS, Zeng SX, Jin Y, et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 2004; 24 : 7654–68. [Google Scholar]
  37. Lohrum MA, Ludwig RL, Kubbutat MH, et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3 : 577–87. [Google Scholar]
  38. Dai MS, Arnold H, Sun XX, Sears R, Lu H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 2007; 26 : 3332–45. [Google Scholar]
  39. Carnero A, Hudson JD, Price CM, Beach DH. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2 : 148–55. [Google Scholar]
  40. Ayrault O, Andrique L, Larsen CJ, Séité P. La régulation négative de la biogenèse des ribosomes : une nouvelle voie de contrôle du cycle celullaire par le suppresseur de tumeur Arf ? Med Sci (Paris) 2006; 22 : 519–24. [Google Scholar]
  41. Olson MO. Sensing cellular stress: another new function for the nucleolus ? Sci STKE 2004; 2004 : pe10. [Google Scholar]
  42. Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003; 22 : 6068–77. [Google Scholar]
  43. Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451 : 335–9. [Google Scholar]
  44. Hoareau-Aveilla C, Henry Y, Leblanc T. La dyskératose congénitale : une maladie méconnue due à un maintien défectueux des télomères. Med Sci (Paris) 2008; 24 : 390–8. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.