Accès gratuit
Med Sci (Paris)
Volume 24, Numéro 8-9, Août-Septembre 2008
Page(s) 735 - 741
Section M/S revues
Publié en ligne 15 août 2008
  1. Deltour S, Chopin V, Leprince D. Modifications épigénétiques et cancer. Med Sci (Paris) 2005; 21 : 405–11. [Google Scholar]
  2. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005; 2 (suppl 1) : S4–11. [Google Scholar]
  3. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37 : 391–400. [Google Scholar]
  4. Govin J, Escoffier E, Rousseaux S, et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 2007; 176 : 283–94. [Google Scholar]
  5. Wallace JA, Felsenfeld G. We gather together: insulators and genome organization. Curr Opin Genet Dev 2007; 17 : 400–7. [Google Scholar]
  6. Loukinov DI, Pugacheva E, Vatolin S, et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 2002; 99 : 6806–11. [Google Scholar]
  7. Vatolin S, Abdullaev Z, Pack SD, et al. Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 2005; 65 : 7751–62. [Google Scholar]
  8. D’Arcy V, Abdullaev ZK, Pore N, et al. The potential of BORIS detected in the leukocytes of breast cancer patients as an early marker of tumorigenesis. Clin Cancer Res 2006; 12 : 5978–86. [Google Scholar]
  9. D’Arcy V, Pore N, Docquier F, et al. BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours. Br J Cancer 2008; 98 : 571–9. [Google Scholar]
  10. Kholmanskikh O, Loriot A, Brasseur F, et al. Expression of BORIS in melanoma: lack of association with MAGE-A1 activation. Int J Cancer 2008; 122 : 777–84. [Google Scholar]
  11. Risinger JI, Chandramouli GV, Maxwell GL, et al. Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression. Clin Cancer Res 2007; 13 : 1713–9. [Google Scholar]
  12. Hong JA, Kang Y, Abdullaev Z, et al. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer Res 2005; 65 : 7763–74. [Google Scholar]
  13. Kang Y, Hong JA, Chen GA, et al. Dynamic transcriptional regulatory complexes including BORIS, CTCF and Sp1 modulate NY-ESO-1 expression in lung cancer cells. Oncogene 2007; 26 : 4394–403. [Google Scholar]
  14. Kondo T, Zhu X, Asa SL, Ezzat S. The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin Cancer Res 2007; 13 : 4713–20. [Google Scholar]
  15. Yang B, Wu J, Maddodi N, et al. Epigenetic control of MAGE gene expression by the KIT tyrosine kinase. J Invest Dermatol 2007; 127 : 2123–8. [Google Scholar]
  16. Yang B, O’Herrin SM, Wu J, et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 2007; 67 : 9954–62. [Google Scholar]
  17. Monte M, Simonatto M, Peche LY, et al. MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci USA 2006; 103 : 11160–5. [Google Scholar]
  18. Laduron S, Deplus R, Zhou S, et al. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004; 32 : 4340–50. [Google Scholar]
  19. Shang E, Nickerson HD, Wen D, et al. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 2007; 134 : 3507–15. [Google Scholar]
  20. Scanlan MJ, Altorki NK, Gure AO, et al. Expression of cancer-testis antigens in lung cancer: definition of bromodomain testis-specific gene (BRDT) as a new CT gene, CT9. Cancer Lett 2000; 150 : 155–64. [Google Scholar]
  21. Gokul G, Gautami B, Malathi S, et al. DNA Methylation profile at the DNMT3L promoter: A potential biomarker for cervical cancer. Epigenetics 2007; 2 : 80–5. [Google Scholar]
  22. Ooi SK, Qiu C, Bernstein E, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 2007; 448 : 714–7. [Google Scholar]
  23. Baudat F, de Massy B. SPO11 : une activité de coupure de l’ADN indispensable à la méiose. Med Sci (Paris) 2004; 20 : 213–8. [Google Scholar]
  24. Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, et al. Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO J 2006; 25 : 3576–85. [Google Scholar]
  25. Park JH, Lin ML, Nishidate T, et al. PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 2006; 66 : 9186–95. [Google Scholar]
  26. Dodge JE, Kang YK, Beppu H, et al. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 2004; 24 : 2478–86. [Google Scholar]
  27. Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005; 19 : 815–26. [Google Scholar]
  28. Collins RE, Tachibana M, Tamaru H, et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 2005; 280 : 5563–70. [Google Scholar]
  29. D’Alessio AC, Weaver IC, Szyf M. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol Cell Biol 2007; 27 : 7462–74. [Google Scholar]
  30. De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5’ region of gene MAGE-A1 in tumor cells. Mol Cell Biol 2004; 24 : 4781–90. [Google Scholar]
  31. Loriot A, De Plaen E, Boon T, De Smet C. Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem 2006; 281 : 10118–26. [Google Scholar]
  32. James SR, Link PA, Karpf AR. Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 2006; 25 : 6975–85. [Google Scholar]
  33. Van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254 : 1643–7. [Google Scholar]
  34. Sahin U, Tureci O, Schmitt H, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92 : 11810–3. [Google Scholar]
  35. Scanlan MJ, Gordon CM, Williamson B, et al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 2002; 98 : 485–92. [Google Scholar]
  36. Bock-Axelsen J, Lotem J, Sachs L, Domany E. Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles. Proc Natl Acad Sci USA 2007; 104 : 13122–7. [Google Scholar]
  37. Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004; 4 : 1–15. [Google Scholar]
  38. Kalejs M, Erenpreisa J. Cancer/testis antigens and gametogenesis: a review and brain-storming session. Cancer Cell Int 2005; 5 : 4. [Google Scholar]
  39. Simpson AJ, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5 : 615–25. [Google Scholar]
  40. Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 2007; 25 : 707–11. [Google Scholar]
  41. Condomines M, Hose D, Raynaud P, et al. Cancer/testis genes in multiple myeloma: expression patterns and prognosis value determined by microarray analysis. J Immunol 2007; 178 : 3307–15. [Google Scholar]
  42. Meklat F, Li Z, Wang Z, et al. Cancer-testis antigens in haematological malignancies. Br J Haematol 2007; 136 : 769–76. [Google Scholar]
  43. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997; 94 : 1914–8. [Google Scholar]
  44. Odunsi K, Qian F, Matsuzaki J, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA 2007; 104 : 12837–42. [Google Scholar]
  45. Susumu S, Nagata Y, Ito S, et al. Cross-presentation of NY-ESO-1 cytotoxic T lymphocyte epitope fused to human heat shock cognate protein 70 by dendritic cells. Cancer Sci 2008; 99 : 107–12. [Google Scholar]
  46. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte parentale. Med Sci (Paris) 2005; 21 : 390–5. [Google Scholar]
  47. Laget S, Defossez PA. Le double jeu de l’épigénétique : cible et acteur du cancer. Med Sci (Paris) 2008; 24 : 725–30. [Google Scholar]
  48. Weber M. Profils de méthylation de l’ADN dans les cellules normales et cancéreuses. Med Sci (Paris) 2008; 24 : 731–4. [Google Scholar]
  49. Henckel A, Feil R. Asymétrie des génomes parentaux : implications en pathologie. Med Sci (Paris) 2008; 24 : 747–52. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.