Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 12, Décembre 2007
Page(s) 1141 - 1147
Section M/S revues
Publié en ligne 15 décembre 2007
  1. Cattran DC, Greenwood C, Ritchie S. Long-term benefits of angiotensin-converting enzyme inhibitor therapy in patients with severe immunoglobulin a nephropathy: a comparison to patients receiving treatment with other antihypertensive agents and to patients receiving no therapy. Am J Kidney Dis 1994; 23 : 247–54.
  2. Bascands JL, Schanstra JP, Couture R, Girolami JP. Bradykinin receptors: towards new pathophysiological roles. Med Sci (Paris) 2003; 19 : 1093–100.
  3. Chen Z, Deddish PA, Minshall RG, et al. Human ACE and bradykinin B2 receptors for a complex at the plasma membrane. FASEB J 2006; 20 : 2611–70.
  4. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 1997; 29 : 394–400.
  5. Chen Z, Tan F, Erdos EG, Deddish PA. Hydrolysis of angiotensin peptides by human angiotensin I-converting enzymes and the resensitization of B2 receptors. Hypertension 2005; 46 : 1368–73.
  6. MacLaughlin M, Monserrat AJ, Muller A, Matoso M, Amorena C. Role of kinins in the renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure. Kidney Blood Press Res 1998; 21 : 329–34.
  7. Liu YH, Yang XP, Sharov VG, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 1997; 99 : 1926–35.
  8. Tsutsumi Y, Matsubara H, Masaki H, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 1999; 104 : 925–35.
  9. Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 2005; 45 : 960–6.
  10. Hannan RE, Davis EA, Widdop RE. Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. Br J Pharmacol 2003; 140 : 987–95.
  11. Kurisu S, Ozono R, Oshima T, et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension 2003; 41 : 99–107.
  12. Abadir PM, Carey RM, Siragy HM. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 2003; 42 : 600–4.
  13. Huang W, Gallois Y, Bouby N, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci USA 2001; 98 : 13330–4.
  14. Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci USA 2004; 101 : 13302–5.
  15. Schanstra JP, Neau E, Drogoz P, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 2002; 110 : 371–9.
  16. Tschope C, Seidl U, Reinecke A, et al. Kinins are involved in the antiproteinuric effect of angiotensin-converting enzyme inhibition in experimental diabetic nephropathy. Int Immunopharmacol 2003; 3 : 335–44.
  17. Maltais I, Bachvarova M, Maheux P, et al. Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients. Can J Physiol Pharmacol 2002; 80 : 323–7.
  18. Aaltonen P, Luimula P, Astrom E, et al. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest 2001; 81 : 1185–90.
  19. Miyata T, Inagi R, Nangaku M, et al. Overexpression of the serpin megsin induces progressive mesangial cell proliferation and expansion. J Clin Invest 2002; 109 : 585–93.
  20. Okada H, Watanabe Y, Kikuta T, et al. Bradykinin decreases plasminogen activator inhibitor-1 expression and facilitates matrix degradation in the renal tubulointerstitium under angiotensin-converting enzyme blockade. J Am Soc Nephrol 2004; 15 : 2404–13.
  21. McAllister BS, Leeb-Lundberg F, Olson MS. Bradykinin inhibition of EGF- and PDGF-induced DNA synthesis in human fibroblasts. Am J Physiol 1993; 265 : C477–84.
  22. Duchene J, Schanstra JP, Pecher C, et al. A novel protein-protein interaction between a G protein-coupled receptor and the phosphatase SHP-2 is involved in bradykinin-induced inhibition of cell proliferation. J Biol Chem 2002; 277 : 40375–83.
  23. Grewal JS, Luttrell LM, Raymond JR. G protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. J Biol Chem 2001; 276 : 27335–44.
  24. Tsuchida S, Miyazaki Y, Matsusaka T, et al. Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature. Kidney Int 1999; 56 : 509–16.
  25. Ritchie RH, Marsh JD, Lancaster WD, et al. Bradykinin blocks angiotensin II-induced hypertrophy in the presence of endothelial cells. Hypertension 1998; 31 : 39–44.
  26. Carvalho CR, Thirone AC, Gontijo JA, et al. Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes 1997; 46 : 1950–7.
  27. Kishi K, Muromoto N, Nakaya Y, et al. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 1998; 47 : 550–8.
  28. Cellier E, Mage M, Duchene J, et al. Bradykinin reduces growth factor-induced glomerular ERK1/2 phosphorylation. Am J Physiol Renal Physiol 2003; 284 : F282–92.
  29. Kakoki M, Kizer CM, Yi X, et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest, 2006; 116 : 1302–9.
  30. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414 : 813–20.
  31. Mikrut K, Paluszak J, Kozlik J, et al. The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Res Clin Pract 2001; 51 : 79–85.
  32. Montanari D, Yin H, Dobrzynski E, et al. Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 2005; 54 : 1573–80.
  33. Xia CF, Bledsoe G, Chao L, Chao J. Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol 2005; 289 : F622–31.
  34. Bledsoe G, Shen B, Yao Y, et al. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther 2006; 17 : 545–55.
  35. Hagiwara M, Murakami H, Ura N, et al. Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27 : 399–408.
  36. Agata J, Miao RQ, Yayama K, et al. Bradykinin B(1) receptor mediates inhibition of neointima formation in rat artery after balloon angioplasty. Hypertension 2000; 36 : 364–70.
  37. Couture R, Girolami JP. Puitative roles of kinin receptor in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2004; 500 : 467–85.
  38. Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 2003; 60 : 297–306.
  39. Asano M, Hatori C, Sawai H, et al. Pharmacological characterization of a nonpeptide bradykinin B2 receptor antagonist, FR165649, and agonist, FR190997. Br J Pharmacol 1998; 124 : 441–6.
  40. Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, et al. Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 2005; 26 : 1292–300.
  41. Chao J, Li HJ, Yao Y, et al. Kinin infusion prevents renal inflammation, apoptosis and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension 2007; 49 : 490–7.
  42. Bascands JL, Pecher C, Rouaud S, et al. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 1993; 264 : F548–56.
  43. Velarde V, de la Cerda PM, Duarte C, et al. Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biol Res 2004; 37 : 419–30.
  44. Greco S, Elia MG, Muscella A, et al. Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 2005; 186 : 291–301.
  45. Alric C, Pecher C, Cellier E, et al. Inhibition of IGF-I-induced Erk 1 and 2 activation and mitogenesis in mesangial cells by bradykinin. Kidney Int 2002; 62 : 412–21.
  46. Yasunari K, Maeda K, Watanabe T, et al. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation. J Cardiovasc Pharmacol 2003; 42 (suppl 1) : S55–60.
  47. Dixon BS, Evanoff D, Fang WB, Dennis MJ. Bradykinin B1 receptor blocks PDGF-induced mitogenesis by prolonging ERK activation and increasing p27Kip1. Am J Physiol Cell Physiol 2002; 283 : C193–203.
  48. Patel KV, Schrey MP. Inhibition of DNA synthesis and growth in human breast stromal cells by bradykinin: evidence for independent roles of B1 and B2 receptors in the respective control of cell growth and phospholipid hydrolysis. Cancer Res 1992; 52 : 334–40.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.