Free Access
Issue
Med Sci (Paris)
Volume 23, Number 12, Décembre 2007
Page(s) 1141 - 1147
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723121141
Published online 15 December 2007
  1. Cattran DC, Greenwood C, Ritchie S. Long-term benefits of angiotensin-converting enzyme inhibitor therapy in patients with severe immunoglobulin a nephropathy: a comparison to patients receiving treatment with other antihypertensive agents and to patients receiving no therapy. Am J Kidney Dis 1994; 23 : 247–54. [Google Scholar]
  2. Bascands JL, Schanstra JP, Couture R, Girolami JP. Bradykinin receptors: towards new pathophysiological roles. Med Sci (Paris) 2003; 19 : 1093–100. [Google Scholar]
  3. Chen Z, Deddish PA, Minshall RG, et al. Human ACE and bradykinin B2 receptors for a complex at the plasma membrane. FASEB J 2006; 20 : 2611–70. [Google Scholar]
  4. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 1997; 29 : 394–400. [Google Scholar]
  5. Chen Z, Tan F, Erdos EG, Deddish PA. Hydrolysis of angiotensin peptides by human angiotensin I-converting enzymes and the resensitization of B2 receptors. Hypertension 2005; 46 : 1368–73. [Google Scholar]
  6. MacLaughlin M, Monserrat AJ, Muller A, Matoso M, Amorena C. Role of kinins in the renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure. Kidney Blood Press Res 1998; 21 : 329–34. [Google Scholar]
  7. Liu YH, Yang XP, Sharov VG, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 1997; 99 : 1926–35. [Google Scholar]
  8. Tsutsumi Y, Matsubara H, Masaki H, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 1999; 104 : 925–35. [Google Scholar]
  9. Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 2005; 45 : 960–6. [Google Scholar]
  10. Hannan RE, Davis EA, Widdop RE. Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. Br J Pharmacol 2003; 140 : 987–95. [Google Scholar]
  11. Kurisu S, Ozono R, Oshima T, et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension 2003; 41 : 99–107. [Google Scholar]
  12. Abadir PM, Carey RM, Siragy HM. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 2003; 42 : 600–4. [Google Scholar]
  13. Huang W, Gallois Y, Bouby N, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci USA 2001; 98 : 13330–4. [Google Scholar]
  14. Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci USA 2004; 101 : 13302–5. [Google Scholar]
  15. Schanstra JP, Neau E, Drogoz P, et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 2002; 110 : 371–9. [Google Scholar]
  16. Tschope C, Seidl U, Reinecke A, et al. Kinins are involved in the antiproteinuric effect of angiotensin-converting enzyme inhibition in experimental diabetic nephropathy. Int Immunopharmacol 2003; 3 : 335–44. [Google Scholar]
  17. Maltais I, Bachvarova M, Maheux P, et al. Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients. Can J Physiol Pharmacol 2002; 80 : 323–7. [Google Scholar]
  18. Aaltonen P, Luimula P, Astrom E, et al. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest 2001; 81 : 1185–90. [Google Scholar]
  19. Miyata T, Inagi R, Nangaku M, et al. Overexpression of the serpin megsin induces progressive mesangial cell proliferation and expansion. J Clin Invest 2002; 109 : 585–93. [Google Scholar]
  20. Okada H, Watanabe Y, Kikuta T, et al. Bradykinin decreases plasminogen activator inhibitor-1 expression and facilitates matrix degradation in the renal tubulointerstitium under angiotensin-converting enzyme blockade. J Am Soc Nephrol 2004; 15 : 2404–13. [Google Scholar]
  21. McAllister BS, Leeb-Lundberg F, Olson MS. Bradykinin inhibition of EGF- and PDGF-induced DNA synthesis in human fibroblasts. Am J Physiol 1993; 265 : C477–84. [Google Scholar]
  22. Duchene J, Schanstra JP, Pecher C, et al. A novel protein-protein interaction between a G protein-coupled receptor and the phosphatase SHP-2 is involved in bradykinin-induced inhibition of cell proliferation. J Biol Chem 2002; 277 : 40375–83. [Google Scholar]
  23. Grewal JS, Luttrell LM, Raymond JR. G protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. J Biol Chem 2001; 276 : 27335–44. [Google Scholar]
  24. Tsuchida S, Miyazaki Y, Matsusaka T, et al. Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature. Kidney Int 1999; 56 : 509–16. [Google Scholar]
  25. Ritchie RH, Marsh JD, Lancaster WD, et al. Bradykinin blocks angiotensin II-induced hypertrophy in the presence of endothelial cells. Hypertension 1998; 31 : 39–44. [Google Scholar]
  26. Carvalho CR, Thirone AC, Gontijo JA, et al. Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes 1997; 46 : 1950–7. [Google Scholar]
  27. Kishi K, Muromoto N, Nakaya Y, et al. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 1998; 47 : 550–8. [Google Scholar]
  28. Cellier E, Mage M, Duchene J, et al. Bradykinin reduces growth factor-induced glomerular ERK1/2 phosphorylation. Am J Physiol Renal Physiol 2003; 284 : F282–92. [Google Scholar]
  29. Kakoki M, Kizer CM, Yi X, et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest, 2006; 116 : 1302–9. [Google Scholar]
  30. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414 : 813–20. [Google Scholar]
  31. Mikrut K, Paluszak J, Kozlik J, et al. The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Res Clin Pract 2001; 51 : 79–85. [Google Scholar]
  32. Montanari D, Yin H, Dobrzynski E, et al. Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats. Diabetes 2005; 54 : 1573–80. [Google Scholar]
  33. Xia CF, Bledsoe G, Chao L, Chao J. Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol 2005; 289 : F622–31. [Google Scholar]
  34. Bledsoe G, Shen B, Yao Y, et al. Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther 2006; 17 : 545–55. [Google Scholar]
  35. Hagiwara M, Murakami H, Ura N, et al. Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27 : 399–408. [Google Scholar]
  36. Agata J, Miao RQ, Yayama K, et al. Bradykinin B(1) receptor mediates inhibition of neointima formation in rat artery after balloon angioplasty. Hypertension 2000; 36 : 364–70. [Google Scholar]
  37. Couture R, Girolami JP. Puitative roles of kinin receptor in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2004; 500 : 467–85. [Google Scholar]
  38. Borlongan CV, Emerich DF. Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 2003; 60 : 297–306. [Google Scholar]
  39. Asano M, Hatori C, Sawai H, et al. Pharmacological characterization of a nonpeptide bradykinin B2 receptor antagonist, FR165649, and agonist, FR190997. Br J Pharmacol 1998; 124 : 441–6. [Google Scholar]
  40. Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, et al. Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 2005; 26 : 1292–300. [Google Scholar]
  41. Chao J, Li HJ, Yao Y, et al. Kinin infusion prevents renal inflammation, apoptosis and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension 2007; 49 : 490–7. [Google Scholar]
  42. Bascands JL, Pecher C, Rouaud S, et al. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 1993; 264 : F548–56. [Google Scholar]
  43. Velarde V, de la Cerda PM, Duarte C, et al. Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biol Res 2004; 37 : 419–30. [Google Scholar]
  44. Greco S, Elia MG, Muscella A, et al. Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 2005; 186 : 291–301. [Google Scholar]
  45. Alric C, Pecher C, Cellier E, et al. Inhibition of IGF-I-induced Erk 1 and 2 activation and mitogenesis in mesangial cells by bradykinin. Kidney Int 2002; 62 : 412–21. [Google Scholar]
  46. Yasunari K, Maeda K, Watanabe T, et al. Converting enzyme inhibitor temocaprilat prevents high glucose-mediated suppression of human aortic endothelial cell proliferation. J Cardiovasc Pharmacol 2003; 42 (suppl 1) : S55–60. [Google Scholar]
  47. Dixon BS, Evanoff D, Fang WB, Dennis MJ. Bradykinin B1 receptor blocks PDGF-induced mitogenesis by prolonging ERK activation and increasing p27Kip1. Am J Physiol Cell Physiol 2002; 283 : C193–203. [Google Scholar]
  48. Patel KV, Schrey MP. Inhibition of DNA synthesis and growth in human breast stromal cells by bradykinin: evidence for independent roles of B1 and B2 receptors in the respective control of cell growth and phospholipid hydrolysis. Cancer Res 1992; 52 : 334–40. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.