Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 11, Novembre 2007
Page(s) 980 - 984
Section M/S revues
DOI https://doi.org/10.1051/medsci/20072311980
Publié en ligne 15 novembre 2007
  1. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17 : 657–700. [Google Scholar]
  2. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382 : 833–5. [Google Scholar]
  3. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52 : 145–76. [Google Scholar]
  4. Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280 : 35760–6. [Google Scholar]
  5. Murdoch C. CXCR4: chemokine receptor extraordinaire. Immunol Rev 2000; 177 : 175–84. [Google Scholar]
  6. Balabanian K, Lagane B, Pablos JL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105 : 2449–57. [Google Scholar]
  7. Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004; 104 : 444–52. [Google Scholar]
  8. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 2003; 34 : 70–4. [Google Scholar]
  9. Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med 2001; 345 : 833–5. [Google Scholar]
  10. Lapidot T. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann NY Acad Sci 2001; 938 : 83–95. [Google Scholar]
  11. Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 2001; 1 : 108–16. [Google Scholar]
  12. Matthys P, Hatse S, Vermeire K, et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 2001; 167 : 4686–92. [Google Scholar]
  13. Szabo I, Chen XH, Xin L, et al. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 2002; 99 : 10276–81. [Google Scholar]
  14. Hendrix CW, Collier AC, Lederman MM, et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 2004; 37 : 1253–62. [Google Scholar]
  15. Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201 : 1307–18. [Google Scholar]
  16. Heveker N. Chemokine receptors as anti-retroviral targets. Curr Drug Targets 2001; 2 : 21–39. [Google Scholar]
  17. Heveker N, Montes M, Germeroth L, et al. Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Curr Biol 1998; 8 : 369–76. [Google Scholar]
  18. De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980; 255 : 7108–17. [Google Scholar]
  19. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000; 21 : 90–113. [Google Scholar]
  20. Urban JD, Clarke WP, von Zastrow M, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007; 320 : 1–13. [Google Scholar]
  21. Ganju RK, Brubaker SA, Meyer J, et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998; 273 : 23169–75. [Google Scholar]
  22. Zhang XF, Wang JF, Matczak E, et al. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001; 97 : 3342–8. [Google Scholar]
  23. Montes M, Tagieva NE, Heveker N, et al. SDF-1-induced activation of ERK enhances HIV-1 expression. Eur Cytokine Netw 2000; 11 : 470–7. [Google Scholar]
  24. Haddad E, Zugaza JL, Louache F, et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 2001; 97 : 33–8. [Google Scholar]
  25. Onaran HO, Costa T. Agonist efficacy and allosteric models of receptor action. Ann NY Acad Sci 1997; 812 : 98–115. [Google Scholar]
  26. Kenakin T, Onaran O. The ligand paradox between affinity and efficacy: can you be there and not make a difference ? Trends Pharmacol Sci 2002; 23 : 275–80. [Google Scholar]
  27. Milligan G, Bouvier M. Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 2005; 272 : 2914–25. [Google Scholar]
  28. Percherancier Y, Berchiche YA, Slight I, et al. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 2005; 280 : 9895–903. [Google Scholar]
  29. Berchiche YA, Chow KY, Lagane B, et al. Direct assessment of CXCR4 mutant conformations reveals complex link between receptor structure and G(alpha)(i) activation. J Biol Chem 2007; 282 : 5111–5. [Google Scholar]
  30. Kenakin T. Principles: receptor theory in pharmacology. Trends Pharmacol Sci 2004; 25 : 186–92. [Google Scholar]
  31. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004; 5 : 30–4. [Google Scholar]
  32. Levoye A, Dam J, Ayoub MA, et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 2006; 25 : 3012–23. [Google Scholar]
  33. Springael JY, Le Minh PN, Urizar E, et al. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol 2006; 69 : 1652–61. [Google Scholar]
  34. Barker JN, Wagner JE. Umbilical-cord blood transplantation for the treatment of cancer. Nat Rev Cancer 2003; 3 : 526–32. [Google Scholar]
  35. Lapidot T, Dar A, Kollet O. How do stem cells find their way home ? Blood 2005; 106: 1901–10. [Google Scholar]
  36. Rosu-Myles M, Khandaker M, Wu DM, et al. Characterization of chemokine receptors expressed in primitive blood cells during human hematopoietic ontogeny. Stem Cells 2000; 18 : 374–81. [Google Scholar]
  37. Reca R, Mastellos D, Majka M, et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101 : 3784–93. [Google Scholar]
  38. Yopp AC, Fu S, Honig SM, et al. FTY720-Enhanced T Cell Homing Is Dependent on CCR2, CCR5, CCR7, and CXCR4: Evidence for Distinct Chemokine Compartments. J Immunol 2004; 173 : 855–65. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.