Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 11, Novembre 2007
Page(s) 968 - 974
Section M/S revues
DOI https://doi.org/10.1051/medsci/20072311968
Publié en ligne 15 novembre 2007
  1. Stiller CA. Epidemiology and genetics of childhood cancer. Oncogene 2004; 23 : 6429–44.
  2. Krajinovic M, Labuda D, Richer C, et al. Susceptibility to childhood acute lymphoblastic leukemia : influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 1999; 93 : 1496–501.
  3. Sinnett D, Krajinovic M, Labuda D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma 2000; 38 : 447–62.
  4. Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997; 37 : 269–96.
  5. Vatsis KP, Weber WW, Bell DA, et al. Nomenclature for N-acetyltransferases. Pharmacogenetics 1995; 5 : 1–17.
  6. d’Errico A, Taioli E, Chen X, Vineis P. Genetic metabolic polymorphisms and the risk of cancer : a review of the literature. Biomarkers 1996; 1 : 149–73.
  7. Krajinovic M, Richer C, Sinnett H, et al. Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 2000; 9 : 557–62.
  8. Daly AK, Fairbrother KS, Smart J. Recent advances in understanding the molecular basis of polymorphisms in genes encoding cytochrome P450 enzymes. Toxicol Lett 1998; 102-103 : 143–7.
  9. Kato S, Bowman ED, Harrington AM, et al. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst 1995; 87 : 902–7.
  10. Shields PG. Pharmacogenetics : detecting sensitive populations. Environ Health Perspect 1994; 102 (suppl 11) : 81–7.
  11. Krajinovic M, Sinnett H, Richer C, et al. Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 2002; 97 : 230–6.
  12. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family : regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30 : 445–600.
  13. Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997; 6 : 733–43.
  14. Cossar D, Bell J, Strange R, et al. The alpha and pi isoenzymes of glutathione S-transferase in human fetal lung : in utero ontogeny compared with differentiation in lung organ culture. Biochim Biophys Acta 1990; 1037 : 221–6.
  15. Harries LW, Stubbins MJ, Forman D, et al. Identification of genetic polymorphisms at the glutathione S- transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997; 18 : 641–4.
  16. Hu X, Xia H, Srivastava SK, et al. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 1997; 238 : 397–402.
  17. Krajinovic M, Labuda D, Sinnett D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics 2002; 12 : 655–8.
  18. Watson MA, Stewart RK, Smith GB, et al. Human glutathione S-transferase P1 polymorphisms : relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998; 19 : 275–80.
  19. Sundberg K, Johansson AS, Stenberg G, et al. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 1998; 19 : 433–6.
  20. Hiley C, Bell J, Hume R, Strange R. Differential expression of alpha and pi isoenzymes of glutathione S-transferase in developing human kidney. Biochim Biophys Acta 1989; 990 : 321–4.
  21. Kettle AJ, Winterbourn CC. Oxidation of hydroquinone by myeloperoxidase. Mechanism of stimulation by benzoquinone. J Biol Chem 1992; 267 : 8319–24.
  22. Piedrafita FJ, Molander RB, Vansant G, et al. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem 1996; 271 : 14412–20.
  23. Reynolds WF, Chang E, Douer D, et al. An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood 1997; 90 : 2730–7.
  24. Cascorbi I, Henning S, Brockmoller J, et al. Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant--463A of the myeloperoxidase gene. Cancer Res 2000; 60 : 644–9.
  25. Gaedigk A, Tyndale RF, Jurima-Romet M, et al. NAD(P)H : quinone oxidoreductase : polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics 1998; 8 : 305–13.
  26. Larson RA, Wang Y, Banerjee M, et al. Prevalence of the inactivating 609C-T polymorphism in the NAD(P)H : quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999; 94 : 803–7.
  27. Wiemels JL, Pagnamenta A, Taylor GM, et al. A lack of a functional NAD(P)H : quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 1999; 59 : 4095–9.
  28. Fairbrother KS, Grove J, de Waziers I, et al. Detection and characterization of novel polymorphisms in the CYP2E1 gene. Pharmacogenetics 1998; 8 : 543–52.
  29. Smith MT. Benzene, NQO1, and genetic susceptibility to cancer. Proc Natl Acad Sci USA 1999; 96 : 7624–6.
  30. Infante-Rivard C, Labuda D, Krajinovic M, Sinnett D. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology 1999; 10 : 481–7.
  31. Clavel J, Bellec S, Rebouissou S, et al. Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 2005; 14 : 531–40.
  32. Infante-Rivard C, Sinnett D. Preconceptional paternal exposure to pesticides and increased risk of childhood leukaemia. Lancet 1999; 354 : 1819.
  33. Infante-Rivard C, Krajinovic M, Labuda D, Sinnett D. Parental smoking, CYP1A1 genetic polymorphisms and childhood leukemia (Quebec, Canada). Cancer Causes Control 2000; 11 : 547–53.
  34. Joseph T, Kusumakumary P, Chacko P, et al. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer 2004; 43 : 560–7.
  35. Infante-Rivard C, Krajinovic M, Labuda D, Sinnett D. Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and carcinogen-metabolizing genetic polymorphisms. Epidemiology 2002; 13 : 277–81.
  36. Infante-Rivard C, Amre D, Sinnett D. GSTT1 and CYP2E1 polymorphisms and trihalomethanes in drinking water : effect on childhood leukemia. Environ Health Perspect 2002; 110 : 591–3.
  37. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 2006; 81 : 162–70.
  38. Pakakasama S, Mukda E, Sasanakul W, et al. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol 2005; 79 : 202–5.
  39. Wang J, Zhang L, Feng J, et al. Genetic polymorphisms analysis of glutathion S-transferase M1 and T1 in children with acute lymphoblastic leukemia. J Huazhong Univ Sci Technolog Med Sci 2004; 24 : 243–244.
  40. Canalle R, Burim RV, Tone LG, Takahashi CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 2004; 43 : 100–9.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.