Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 11, Novembre 2007
Page(s) 1014 - 1020
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723111014
Publié en ligne 15 novembre 2007
  1. Mu H, Porsgaard T. The metabolism of structured triacylglycerols. Prog Lipid Res 2005; 44 : 430–48. [Google Scholar]
  2. Mu H, Hoy CE. The digestion of dietary triacylglycerols. Prog Lipid Res 2004; 43 : 105–33. [Google Scholar]
  3. Fernandis AZ, Wenk MR. Membrane lipids as signaling molecules. Curr Opin Lipidol 2007; 18 : 121–8. [Google Scholar]
  4. Ménard D, Monfils S, Tremblay E. Ontogeny of human gastric lipase and pepsin activities. Gastroenterology 1995; 108 : 1650–6. [Google Scholar]
  5. Levy E, Goldstein R, Freier S, et al. Gastric lipase in the newborn rat. Pediatr Res 1982; 16 : 69–74. [Google Scholar]
  6. Roy CC, Roulet M, Lefebvre D, et al. The role of gastric lipolysis on fat absorption and bile acid metabolism in the rat. Lipids 1979; 14 : 811–5. [Google Scholar]
  7. Borgstrom B. On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts. J Lipid Res 1975; 16 : 411–7. [Google Scholar]
  8. Hildebrand P, Beglinger C, Gyr K, et al. Effects of a cholecystokinin receptor antagonist on intestinal phase of pancreatic and biliary responses in man. J Clin Invest 1990; 85 : 640–6. [Google Scholar]
  9. Roy CC, Weber AM, Lepage G, et al. Digestive and absorptive phase anomalies associated with the exocrine pancreatic insufficiency of cystic fibrosis. J Pediatr Gastroenterol Nutr 1988; 7 (suppl 1) : S1–7. [Google Scholar]
  10. Peretti N, Marcil V, Drouin E, et al. Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency. Nutr Metab (Lond) 2005; 2 (1) : 11. [Google Scholar]
  11. Abrams CK, Hamosh M, Lee TC, et al. Gastric lipase: localization in the human stomach. Gastroenterology 1988; 95 : 1460–4. [Google Scholar]
  12. Lepage G, Levy E, Ronco N, et al. Direct transesterification of plasma fatty acids for the diagnosis of essential fatty acid deficiency in cystic fibrosis. J Lipid Res 1989; 30 : 1483–90. [Google Scholar]
  13. Levy E, Lepage G, Bendayan M, et al. Relationship of decreased hepatic lipase activity and lipoprotein abnormalities to essential fatty acid deficiency in cystic fibrosis patients. J Lipid Res 1989; 30 : 1197–209. [Google Scholar]
  14. Levy E, Garofalo C, Thibault L, et al. Intraluminal and intracellular phases of fat absorption are impaired in essential fatty acid deficiency. Am J Physiol 1992; 262 : G319–26. [Google Scholar]
  15. Thomson AB, Schoeller C, Keelan M, et al. Lipid absorption: passing through the unstirred layers, brush-border membrane, and beyond. Can J Physiol Pharmacol 1993; 71 : 531–55. [Google Scholar]
  16. Stremmel W. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 1988; 82 : 2001–10. [Google Scholar]
  17. Altmann SW, Davis HR, Jr, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303 : 1201–4. [Google Scholar]
  18. Levy E, Menard D, Suc I, et al. Ontogeny, immunolocalisation, distribution and function of SR-BI in the human intestine. J Cell Sci 2004; 117 : 327–37. [Google Scholar]
  19. Smart EJ, De Rose RA, Farber SA. Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport. Proc Natl Acad Sci USA 2004; 101 : 3450–5. [Google Scholar]
  20. Werder M, Han CH, Wehrli E, et al. Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine. Biochemistry 2001; 40 : 11643–50. [Google Scholar]
  21. Sane AT, Sinnett D, Delvin E, et al. Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res 2006; 47 : 2112–20. [Google Scholar]
  22. Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289 : 1524–9. [Google Scholar]
  23. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290 : 1771–5. [Google Scholar]
  24. Peretti N, Delvin E, Sinnett D, et al. Asymmetrical regulation of scavenger receptor class B type I by apical and basolateral stimuli using Caco-2 cells. J Cell Biochem 2006; 100 : 421-33.. [Google Scholar]
  25. Levy E, Mehran M, Seidman E. Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion. FASEB J 1995; 9 : 626–35. [Google Scholar]
  26. Montoudis A, Delvin E, Menard D, et al. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells. Biochem Biophys Res Commun 2006; 339 : 248–54. [Google Scholar]
  27. Stan S, Lambert M, Delvin E, et al. Intestinal fatty acid binding protein and microsomal triglyceride transfer protein polymorphisms in French-Canadian youth. J Lipid Res 2005; 46 : 320–7. [Google Scholar]
  28. Levy E, Menard D, Delvin E, et al. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 2001; 276 : 39679–84. [Google Scholar]
  29. Trotter PJ, Storch J. Fatty acid esterification during differentiation of the human intestinal cell line Caco-2. J Biol Chem 1993; 268 : 10017–23. [Google Scholar]
  30. Farese RV, Jr., Cases S, Smith SJ. Triglyceride synthesis: insights from the cloning of diacylglycerol acyltransferase. Curr Opin Lipidol 2000; 11 : 229–34. [Google Scholar]
  31. Chang CC, Sakashita N, Ornvold K, et al. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem 2000; 275 : 28083–92. [Google Scholar]
  32. Siddiqi SA, Gorelick FS, Mahan JT, et al. COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J Cell Sci 2003; 116 : 415–27. [Google Scholar]
  33. Jones B, Jones EL, Bonney SA, et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet 2003; 34 : 29–31. [Google Scholar]
  34. Levy E, Marcel YL, Milne RW, et al. Absence of intestinal synthesis of apolipoprotein B-48 in two cases of abetalipoproteinemia. Gastroenterology 1987; 93 : 1119–26. [Google Scholar]
  35. Roy CC, Levy E, Green PH, et al. Malabsorption, hypocholesterolemia, and fat-filled enterocytes with increased intestinal apoprotein B. Chylomicron retention disease. Gastroenterology 1987; 92 : 390–9. [Google Scholar]
  36. Levy E, Roy CC, Thibault L, et al. Variable expression of familial heterozygous hypobetalipoproteinemia: transient malabsorption during infancy. J Lipid Res 1994; 35 : 2170–7. [Google Scholar]
  37. Ricci B, Sharp D, O’Rourke E, et al. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J Biol Chem 1995; 270 : 14281–5. [Google Scholar]
  38. Zoltowska M, Ziv E, Delvin E, et al. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and type 2 diabetes. Diabetes 2003; 52 : 2539–45. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.