Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 11, Novembre 2007
Page(s) 1002 - 1007
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723111002
Publié en ligne 15 novembre 2007
  1. Balistreri WF, Bezerra JA. Whatever happened to « neonatal hepatitis » ? Clin Liver Dis 2006; 10 : 27–53. [Google Scholar]
  2. Suchy FJ. Neonatal cholestasis. Pediatr Rev 2004; 25 : 388–96. [Google Scholar]
  3. Weber AM, Tuchweber B, Yousef I, et al. Severe familial cholestasis in North American Indian children : a clinical model of microfilament dysfunction ? Gastroenterology 1981; 81 : 653–62. [Google Scholar]
  4. Drouin E, Russo P, Tuchweber B, et al. North American Indian cirrhosis in children : a review of 30 cases. J Pediatr Gastroenterol Nutr 2000; 31 : 395–404. [Google Scholar]
  5. Betard C, Rasquin-Weber A, Brewer C, et al. Localization of a recessive gene for North American Indian childhood cirrhosis to chromosome region 16q22 and identification of a shared haplotype. Am J Hum Genet 2000; 67 : 222–8. [Google Scholar]
  6. Chagnon P, Michaud J, Mitchell GA, et al. A Missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet 2002; 71 : 1443–9. [Google Scholar]
  7. Haworth JC, Booth FA, Chudley AE, et al. Phenotypic variability in glutaric aciduria type I : Report of fourteen cases in five Canadian Indian kindreds. J Pediatr 1991; 118 : 52–8. [Google Scholar]
  8. Greenberg CR, Reimer D, Singal R, et al. A G-to-T transversion at the +5 position of intron 1 in the glutaryl CoA dehydrogenase gene is associated with the Island Lake variant of glutaric acidemia type I. Hum Mol Genet 1995; 4 : 493–5. [Google Scholar]
  9. Robinson BH, Oei J, Sherwood WG, et al. The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 1984; 36 : 283–94. [Google Scholar]
  10. Weiler T, Greenberg CR, Nylen E, et al. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype. Am J Hum Genet 1996; 59 : 872–8. [Google Scholar]
  11. Lopez-Fernandez LA, del Mazo J. Characterization of genes expressed early in mouse spermatogenesis, isolated from a subtractive cDNA library. Mamm Genome 1996; 7 : 698–700. [Google Scholar]
  12. Nagase T, Kikuno R, Ohara O. Prediction of the coding sequences of unidentified human genes. XXII. The complete sequences of 50 new cDNA clones which code for large proteins. DNA Res 2001; 8 : 319–27. [Google Scholar]
  13. Dragon F, Gallagher JE, Compagnone-Post PA, et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002; 417 : 967–70. [Google Scholar]
  14. Li D, Roberts R. WD-repeat proteins : structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 2001; 58 : 2085–97. [Google Scholar]
  15. Yu B, Mitchell GA, Richter A. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis. Exp Cell Res 2005; 311 : 218–28. [Google Scholar]
  16. Scherl A, Coute Y, Deon C, et al. Functional proteomic analysis of human nucleolus. Mol Biol Cell 2002; 13 : 4100–9. [Google Scholar]
  17. Leung AK, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2003; 376 : 553–69. [Google Scholar]
  18. Andersen JS, Lam YW, Leung AK, et al. Nucleolar proteome dynamics. Nature 2005; 433 : 77–83. [Google Scholar]
  19. Olson MO, Dundr M, Szebeni A. The nucleolus : an old factory with unexpected capabilities. Trends Cell Biol 2000; 10 : 189–96. [Google Scholar]
  20. Carmo-Fonseca M, Mendes-Soares L, Campos I. To be or not to be in the nucleolus. Nat Cell Biol 2000; 2 : E107–12. [Google Scholar]
  21. Carmo-Fonseca M. The contribution of nuclear compartmentalization to gene regulation. Cell 2002; 108 : 513–21. [Google Scholar]
  22. Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 2001; 24 : 201–17. [Google Scholar]
  23. Hicar MD, Liu Y, Allen CE, Wu LC. Structure of the human zinc finger protein HIVEP3 : molecular cloning, expression, exon-intron structure, and comparison with paralogous genes HIVEP1 and HIVEP2. Genomics 2001; 71 : 89–100. [Google Scholar]
  24. Xiao W. Advances in NF-kappaB signaling transduction and transcription. Cell Mol Immunol 2004; 1 : 425–35. [Google Scholar]
  25. Yu B, Mitchell GA, Richter A. Cirhin, the protein mutated in NAIC is a transcriptional cofactor of HIVEP1 DNA binding protein. 54th American Society of Human Genetics meeting, 2004 : 458 (abstract). [Google Scholar]
  26. Winzeler EA, Shoemaker DD, Astromoff A, et al Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999; 285 : 901–6. [Google Scholar]
  27. Yu B, Mitchell GA, Richter A. Embryonic lethality in mice deficient in tex292, ortholog of the North American Indian childhood cirrhosis (NAIC) gene CIRH1A. Salt Lake City : American Society of Human Genetics 55th Annual Meeting, octobre 2005 (abstract). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.