Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 10, Octobre 2007
Page(s) 885 - 894
Section Recherche et partenariat
Publié en ligne 15 octobre 2007
  1. Himsworth HP. Diabetes mellitus : its differentiation into insulin sensitive and insulin insensitive types. Lancet 1936; I : 1117–22.
  2. Yalow RS, Berson SA. Plasma insulin concentrations in nondiabetic and early diabetic subjects. Determinations by a new sensitive immuno-assay technic. Diabetes 1960; 9 : 254–60.
  3. Efendic S, Luft R, Wajngot A. Aspects of the pathogenesis of type 2 diabetes. Endocrinol Rev 1984; 5 : 395–410.
  4. Nesher R, Della Casa L, Litvin, et al. Insulin deficiency and insulin resistance in type 2 (non-insulin-dependent) diabetes : quantitative contributions of pancreatic and peripheral responses to glucose homeostasis. Eur J Clin Invest 1987; 17 : 266–74.
  5. Ilkova H, Glaser B, Tunçkale A, et al. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care 1997; 20 : 1353–6.
  6. Kruszynka YT, Home PD, Hanning I, Alberti KGMM. Basal and 24-h C-peptide and insulin secretion rate in normal man. Diabetologia 1987; 30 : 16–21.
  7. Ahrén B, Thorsson O. Increased insulin sensitivity is associated with reduced insulin and glucagon secretion and increased insulin clearance in man. J Clin Endocrinol Metab 2003; 88 : 1264–70.
  8. Luft R, Cerasi E, Hamberger CA. Studies on the pathogenesis of diabetes in acromegaly. Acta Endocr (Kbh) 1967; 56 : 593–607.
  9. Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy : increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992; 130 : 1459–66.
  10. Edström K, Cerasi E, Luft R. Insulin response to glucose infusion during pregnancy. A prospective study of high and low insulin responders with normal carbohydrate tolerance. Acta Endocr (Kbh) 1974; 75 : 87–104.
  11. Bouwens L, Rooman I. Regulation of Pancreatic β-cell mass. Physiol Rev 2005; 85 : 1255–70.
  12. Sorenson R, Brelje T. Adaptation of islets of Langerhans to pregnancy : β cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29 : 301–7.
  13. Klöppel G, Löhr M, Habich K, et al. Islet pathology and pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Path Res 1985; 4 : 110–25.
  14. Butler AE, Janson J, Bonner-Weir S, et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52 : 102–10.
  15. Cerasi E, Luft R. Plasma insulin response to sustained hyperglycaemia induced by glucose infusion in human subjects. Lancet 1963; 282 : 1359–61.
  16. Cerasi E, Luft R. What is inherited — what is added. Hypothesis for the pathogenesis of diabetes mellitus. Diabetes 1967; 16 : 615–27.
  17. Alvarsson M, Wajngot A, Cerasi E, Efendic S. K-value and low insulin secretion in a non-obese white population predicted glucose tolerance after 25 years. Diabetologia 2005; 48 : 2262–8.
  18. Pratley RE, Weyer C. The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 2001; 44 : 929–45.
  19. Deng S, Vatamaniuk M, Huang M, et al. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 2004; 53 : 624–32.
  20. Kaiser N, Yuli M, Üçkaya C, et al. Dynamic changes in beta-cell mass and pancreatic insulin during the evolution of nutrition-dependent diabetes in Psammomys obesus. Impact of glycemic control. Diabetes 2005; 54 : 138–45.
  21. Kaiser N, Nesher R, Donath MY, et al. Psammomys Obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes 2005; 54 (suppl 2) : S137–44.
  22. Rahier J, Guiot Y, Sempoux C. Diabète de type 2 et déficit des cellules B. In : Selam JL, ed. Journées annuelles de diabétologie de l’Hôtel-Dieu. Paris : Flammarion Médecine-Sciences, 2004 : 15–20.
  23. Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes 2001; 50 (suppl 1) : S30–5.
  24. Bernard C, Thibault C, Berthault, et al. Pancreatic β-cell regeneration after 48h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes 1998; 47 : 1058–65.
  25. Frederici M, Hribal M, Perego L, et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans : a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 2001; 50 : 1290–301.
  26. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110 : 851–60.
  27. Koyama M, Wada R, Sakuraba H, et al. Accelerated loss of islet β-cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 1998; 153 : 537–45.
  28. McGarry J, Dobbins R. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999; 42 : 128–38.
  29. Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats : impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA 1994; 91 : 10878–82.
  30. Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced β-cell apoptosis : a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95 : 2498–502.
  31. Shimabukuro M, Higa M, Zhou Y, et al. Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. J Biol Chem 1998; 273 : 32487–90.
  32. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β-cells in diabetes. J Biol Chem 2004; 279 : 42351–4.
  33. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signalling pathways mediators of insulin resistance and beta cell dysfunction ? Diabetes 2003; 52 : 1–8.
  34. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets : evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 2002; 51 : 1437–42.
  35. Piro S, Anello M, Di Pietro C, et al. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets : possible role of oxidative stress. Metabolism 2002; 51 : 1340–7.
  36. Laybutt DR, Preston AM, Akerfeldt MC, et al. Endoplasmic reticulum stress contributes to beta-cell apoptosis in type 2 diabetes. Diabetologia 2007; 50 : 752–63.
  37. Cerasi E. Differential actions of glucose on insulin release : reevaluation of a mathematical model. In : Cobelli C, Bergman RN, eds. Carbohydrate metabolism. Chichester : John Wiley and Sons, 1981 : 3–22.
  38. Scott LJ, Mohlke KL, Bonnycastel LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316 : 1341–5.
  39. Saxena R, Voigt BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316 : 1331–6.
  40. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316 : 1336–41.
  41. Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups : a global meta-analysis. J Mol Med 2007; 85 : 777–82.
  42. Saxena R, Gianniny L, Burtt NP, et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006; 55 : 2890–95.
  43. Campbell IW, Mariz S. β-cell preservation with thiazolidinediones. Diabetes Res Clin Practice 2007; 76 : 163–76.
  44. Zeender E, Maedler K, Bosco D, et al. Pioglitazone and sodium salicylate protect human beta-cells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 2004; 89 : 5059–66.
  45. Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor γ (PPARγ) in normal human pancreatic islet cells. Diabetologia 2000; 43 : 1165–9.
  46. Wong VSC, Brubaker PL. From cradle to grave : pancreatic β-cell mass and glucagons-like peptide-1. Minerva Endocrinol 2006; 31 : 107–24.
  47. Edvell A, Lindstrom P. Initiation of increased pancreatic islet growth in young normoglycemic mice (umea +/?). Endocrinology 1999; 140 : 778–83.
  48. Farilla L, Hui H, Bertolotto C, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002; 143 : 4397–408.
  49. Movassat J, Beattie GM, Lopez AD, Hayek A. Exendin 4 up-regulates expression of pdx 1 and hastens differentiation and maturation of human fetal pancreatic cells. J Clin Endocrinol Metab 2002; 87 : 4775–81.
  50. Combettes M, Ilic C, Broux O, et al. S40010, a potent Dpp-iv inhibitor, improves long-term glycemic control in db/db mice and increases pancreatic β-cell mass and neogenesis. Diabetes 2007; 56 (suppl 1) : A158.
  51. Efendic S, Cerasi E, Elander I, et al. Studies on low insulin responders. Acta Endocrinol 1979; 90 (suppl 224) : 5–32.
  52. Cerasi E, Luft R, Efendic S. Decreased sensitivity of the pancreatic beta-cells to glucose in prediabetic and diabetic subjects. A glucose dose-response study. Diabetes 1972; 21 : 224–34.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.