Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 1, Janvier 2007
Page(s) 53 - 63
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723153
Publié en ligne 15 janvier 2007
  1. Ducros A, Tournier-Lasserve E, Bousser MG. The genetics of migraine. Lancet Neurol 2002; 1 : 285–93. [Google Scholar]
  2. Joutel A, Bousser MG, Biousse V, et al. A gene for familial hemiplegic migraine maps to chromosome 19. Nat Genet 1993; 5 : 40–5. [Google Scholar]
  3. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87 : 543–52. [Google Scholar]
  4. De Fusco M, Marconi R, Silvestri L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 2003; 33 : 192–6. [Google Scholar]
  5. Dichgans M, Freilinger T, Eckstein G, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005; 366 : 371–7. [Google Scholar]
  6. Joutel A, Ducros A, Vahedi K, et al. Genetic heterogeneity of familial hemiplegic migraine. Am J Hum Genet 1994; 55 : 1166–72. [Google Scholar]
  7. Ducros A, Denier C, Joutel A, et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 2001; 345 : 17–24. [Google Scholar]
  8. Jen JC, Kim GW, Dudding KA, Baloh RW. No mutations in CACNA1A and ATP1A2 in probands with common types of migraine. Arch Neurol 2004; 61 : 926–8. [Google Scholar]
  9. Pietrobon D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 2005; 15 : 257–65. [Google Scholar]
  10. Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997; 15 : 62–9. [Google Scholar]
  11. Ertel EA, Campbell KP, Harpold MM, et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25 : 533–5. [Google Scholar]
  12. Mori Y, Friedrich T, Kim MS, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350 : 398–402. [Google Scholar]
  13. Starr TV, Prystay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88 : 5621–5. [Google Scholar]
  14. Meir A, Ginsburg S, Butkevich A, et al. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79 : 1019–88. [Google Scholar]
  15. Sugiura Y, Woppmann A, Miljanich GP, Ko CP. A novel omega-conopeptide for the presynaptic localization of calcium channels at the mammalian neuromuscular junction. J Neurocytol 1995; 24 : 15–27. [Google Scholar]
  16. Lennon VA, Kryzer TJ, Griesmann GE, et al. Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995; 332 : 1467–74. [Google Scholar]
  17. Walker D, De Waard M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci 1998; 21 : 148–54. [Google Scholar]
  18. Jiang Y, Lee A, Chen J, et al. X-ray structure of a voltage-dependent K+ channel. Nature 2003; 423 : 33–41. [Google Scholar]
  19. Heinemann SH, Terlau H, Stuhmer W, et al. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992; 356 : 441–3. [Google Scholar]
  20. Stotz SC, Zamponi GW. Structural determinants of fast inactivation of high voltage-activated Ca2+ channels. Trends Neurosci 2001; 24 : 176–81. [Google Scholar]
  21. Sandoz G, Lopez-Gonzalez I, Stamboulian S, et al. Repositioning of charged I-II loop amino acid residues within the electric field by beta subunit as a novel working hypothesis for the control of fast P/Q calcium channel inactivation. Eur J Neurosci 2004; 19 : 1759–72. [Google Scholar]
  22. Goldin AL, Barchi RL, Caldwell JH, et al. Nomenclature of voltage-gated sodium channels. Neuron 2000; 28 : 365–8. [Google Scholar]
  23. Kraus RL, Sinnegger MJ, Glossmann H, et al. Familial hemiplegic migraine mutations change alpha1A Ca2+ channel kinetics. J Biol Chem 1998; 273 : 5586–90. [Google Scholar]
  24. Kraus RL, Sinnegger MJ, Koschak A, et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca2+ channel kinetics. J Biol Chem 2000; 275 : 9239–43. [Google Scholar]
  25. Hans M, Luvisetto S, Williams ME, et al. Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 1999; 19 : 1610–9. [Google Scholar]
  26. Tottene A, Fellin T, Pagnutti S, et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci USA 2002; 99 : 13284–9. [Google Scholar]
  27. Tottene A, Pivotto F, Fellin T, et al. Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J Biol Chem 2005; 280 : 17678–86. [Google Scholar]
  28. Mullner C, Broos LA, van den Maagdenberg AM, Striessnig J. Familial hemiplegic migraine type 1 mutations K1336E, W1684R, and V1696I alter Cav2.1 Ca2+ channel gating: evidence for beta-subunit isoform-specific effects. J Biol Chem 2004; 279 : 51844–50. [Google Scholar]
  29. Cao YQ, Tsien RW. Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. Proc Natl Acad Sci USA 2005; 102 : 2590–5. [Google Scholar]
  30. Ludwig A, Flockerzi V, Hofmann F. Regional expression and cellular localization of the alpha1 and beta subunit of high voltage-activated calcium channels in rat brain. J Neurosci 1997; 17 : 1339–49. [Google Scholar]
  31. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004; 41 : 701–10. [Google Scholar]
  32. De Waard M, Hering J, Weiss N, Feltz A. How do G proteins directly control neuronal Ca2+ channel function ? Trends Pharmacol Sci 2005; 26 : 427–36. [Google Scholar]
  33. Melliti K, Grabner M, Seabrook GR. The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium channels expressed in human embryonic kidney cells. J Physiol 2003; 546 : 337–47. [Google Scholar]
  34. Dallel R, Villanueva L, Woda A, Voisin D. Neurobiology of trigeminal pain. Med Sci (Paris) 2003; 19 : 567–74. [Google Scholar]
  35. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 1994; 117 : 199–210. [Google Scholar]
  36. Strong AJ, Fabricius M, Boutelle MG, et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 2002; 33 : 2738–43. [Google Scholar]
  37. Parsons AA. Cortical spreading depression: its role in migraine pathogenesis and possible therapeutic intervention strategies. Curr Pain Headache Rep 2004; 8 : 410–6. [Google Scholar]
  38. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999; 283 : 496–7. [Google Scholar]
  39. Kors EE, Terwindt GM, Vermeulen FL, et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 2001; 49 : 753–60. [Google Scholar]
  40. Battistini S, Stenirri S, Piatti M, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology 1999; 53 : 38–43. [Google Scholar]
  41. Alonso I, Barros J, Tuna A, et al. A novel R1347Q mutation in the predicted voltage sensor segment of the P/Q-type calcium-channel alpha-subunit in a family with progressive cerebellar ataxia and hemiplegic migraine. Clin Genet 2004; 65 : 70–2. [Google Scholar]
  42. Vahedi K, Denier C, Ducros A, et al. CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurology 2000; 55 : 1040–2. [Google Scholar]
  43. Carrera P, Piatti M, Stenirri S, et al. Genetic heterogeneity in Italian families with familial hemiplegic migraine. Neurology 1999; 53 : 26–33. [Google Scholar]
  44. Kors EE, Melberg A, Vanmolkot KR, et al. Childhood epilepsy, familial hemiplegic migraine, cerebellar ataxia, and a new CACNA1A mutation. Neurology 2004; 63 : 1136–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.