Free Access
Issue
Med Sci (Paris)
Volume 22, Number 12, Décembre 2006
Page(s) 1087 - 1094
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622121087
Published online 15 December 2006
  1. Tuteja N, Tuteja R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 2004; 271 : 1835–48. [Google Scholar]
  2. Gorbalenya AE, Koonin EV, Donchenko AP, et al. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 1989; 17 : 4713–30. [Google Scholar]
  3. Subramanya HS, Bird LE, Brannigan JA, et al. Crystal structure of a DExx box DNA helicase. Nature 1996; 384 : 379–83. [Google Scholar]
  4. Cordin O, Tanner NK, Doere M, et al. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 2004; 23 : 2478–87. [Google Scholar]
  5. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol 2002; 12 : 123–33. [Google Scholar]
  6. von Hippel PH, Delagoutte E. Macromolecular complexes that unwind nucleic acids. Bioessays 2003; 25 : 1168–77. [Google Scholar]
  7. Dip R, Camenisch U, Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst) 2004; 3 : 1409–23. [Google Scholar]
  8. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003; 85 : 1101–11. [Google Scholar]
  9. Weeda G, van Ham RC, Vermeulen W, et al. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 1990; 62 : 777–91. [Google Scholar]
  10. Weber CA, Salazar EP, Stewart SA, et al. ERCC2 : cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9 : 1437–47. [Google Scholar]
  11. Schaeffer L, Roy R, Humbert S, et al. DNA repair helicase : a component of BTF2 (TFIIH) basic transcription factor. Science 1993; 260 : 58–63. [Google Scholar]
  12. Schaeffer L, Moncollin V, Roy R, et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J 1994; 13 : 2388–92. [Google Scholar]
  13. Egly JM. The 14th Datta lecture. TFIIH : from transcription to clinic. FEBS Lett 2001; 498 : 124–8. [Google Scholar]
  14. Zurita M, Merino C. The transcriptional complexity of the TFIIH complex. Trends Genet 2003; 19 : 578–84. [Google Scholar]
  15. Giglia-Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004; 36 : 714–9. [Google Scholar]
  16. Coin F, Proietti DS, Nardo T, et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell 2006; 21 : 215–26. [Google Scholar]
  17. Reardon JT, Ge H, Gibbs E, et al. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes : ERCC2/CAK and TFIIH. Proc Natl Acad Sci USA 1996; 93 : 6482–7. [Google Scholar]
  18. Tirode F, Busso D, Coin F, et al. Reconstitution of the transcription factor TFIIH : assignment of functions for the three enzymatic subunits XPB, XPD and cdk7. Mol Cell 1999; 3 : 87–95. [Google Scholar]
  19. Schultz P, Fribourg S, Poterszman A, et al. Molecular structure of human TFIIH. Cell 2000; 102 : 599–607. [Google Scholar]
  20. Araujo SJ, Tirode F, Coin F, et al. Nucleotide excision repair of DNA with recombinant human proteins : definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 2000; 14 : 349–59. [Google Scholar]
  21. Winkler GS, Araujo SJ, Fiedler U, et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem 2000; 275 : 4258–66. [Google Scholar]
  22. Coin F, Auriol J, Tapias A, et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J 2004; 23 : 4835–46. [Google Scholar]
  23. Bradsher J, Coin F, Egly JM. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J Biol Chem 2000; 275 : 2532–8. [Google Scholar]
  24. Lin YC, Choi WS, Gralla JD. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat Struct Mol Biol 2005; 12 : 603–7. [Google Scholar]
  25. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy : update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001; 44 : 891–920. [Google Scholar]
  26. Bootsma D, Hoeijmakers JH. DNA repair. Engagement with transcription. Nature 1993; 363 : 114–5. [Google Scholar]
  27. Dubaele S, Proietti DS, Bienstock RJ, et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 2003; 11 : 1635–46. [Google Scholar]
  28. Botta E, Nardo T, Lehmann AR, et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy Hum Mol Genet 2002; 11 : 2919–28. [Google Scholar]
  29. de Boer J, van Steeg H, Berg RJ, et al. Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res 1999; 59 : 3489–94. [Google Scholar]
  30. Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet 2001; 10 : 2797–802. [Google Scholar]
  31. Liu J, He L, Collins I, et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 2000; 5 : 331–41. [Google Scholar]
  32. Keriel A, Stary A, Sarasin A, et al. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARa. Cell 2002; 109 ; 125–35. [Google Scholar]
  33. de Boer J, Andressoo JO, de Wit J, et al. Premature aging in mice deficient in DNA repair and transcription. Science 2002; 296 : 1276–9. [Google Scholar]
  34. Da Costa RM, Riou L, Paquola A, et al. Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele. Oncogene 2005; 24 : 1359–74. [Google Scholar]
  35. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996; 272 : 258–62. [Google Scholar]
  36. Ellis NA, Groden J, Ye TZ, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995; 83 : 655–66. [Google Scholar]
  37. Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome Nat Genet 1999; 22 : 82–4. [Google Scholar]
  38. Mohaghegh P, Hickson ID. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders Hum Mol Genet 2001; 10 : 741–6. [Google Scholar]
  39. Hickson ID. RecQ helicases : caretakers of the genome. Nat Rev Cancer 2003; 3 : 169–78. [Google Scholar]
  40. Gray MD, Shen JC, Kamath-Loeb AS, et al. The Werner syndrome protein is a DNA helicase. Nat Genet 1997; 17 : 100–3. [Google Scholar]
  41. Karow JK, Chakraverty RK, Hickson ID. The Bloom’s syndrome gene product is a 3’→5’ DNA helicase. J Biol Chem 1997; 272 : 30611–4. [Google Scholar]
  42. Macris MA, Krejci L, Bussen W, et al. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair (Amst) 2006 : 5 : 172–80. [Google Scholar]
  43. Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J 2003; 22 : 4910–21. [Google Scholar]
  44. Bernstein DA, Keck JL. Conferring substrate specificity to DNA helicases : role of the RecQ HRDC domain. Structure (Camb) 2005; 13 : 1173–82. [Google Scholar]
  45. Huang S, Li B, Gray MD, et al. The premature ageing syndrome protein, WRN, is a 3’→5’ exonuclease. Nat Genet 1998; 20 : 114–6. [Google Scholar]
  46. Opresko PL, Cheng WH, Bohr VA. Junction of RecQ helicase biochemistry and human disease. J Biol Chem 2004; 279 : 18099–102. [Google Scholar]
  47. Li JL, Harrison RJ, Reszka AP, et al. Inhibition of the Bloom’s and Werner’s syndrome helicases by G-quadruplex interacting ligands. Biochemistry 2001; 40 : 15194–202. [Google Scholar]
  48. Courcelle J, Donaldson JR, Chow KH, et al. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 2003; 299 : 1064–7. [Google Scholar]
  49. Cobb JA, Bjergbaek L, Shimada K, et al. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 2003; 22 : 4325–36. [Google Scholar]
  50. Khakhar RR, Cobb JA, Bjergbaek L, et al. RecQ helicases : multiple roles in genome maintenance. Trends Cell Biol 2003; 13 : 493–501. [Google Scholar]
  51. Laursen LV, Bjergbaek L, Murray JM, et al. RecQ helicases and topoisomerase III in cancer and aging. Biogerontology 2003; 4 : 275–87. [Google Scholar]
  52. Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003; 426 : 870–4. [Google Scholar]
  53. Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 2005; 577 : 237–51. [Google Scholar]
  54. Meetei AR, Medhurst AL, Ling C, et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 2005; 37 : 958–63. [Google Scholar]
  55. Yang Q, Zhang R, Wang XW, et al. The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. J Biol Chem 2002; 277 : 31980–7. [Google Scholar]
  56. Papadopoulo D, Moustacchi E. L’anémie de Fanconi : gènes et fonction(s) revisités. Med Sci (Paris) 2005; 21 : 730–6. [Google Scholar]
  57. Mosedale G, Niedzwiedz W, Alpi A, et al. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol 2005; 12 : 763–71. [Google Scholar]
  58. Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001; 105 : 149–60. [Google Scholar]
  59. Levran O, Attwooll C, Henry RT, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 2005; 37 : 931–3. [Google Scholar]
  60. Levitus M, Waisfisz Q, Godthelp BC, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 2005; 37 : 934–5. [Google Scholar]
  61. Bridge WL, Vandenberg CJ, Franklin RJ, et al. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 2005; 37 : 953–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.