Accès gratuit
Med Sci (Paris)
Volume 22, Numéro 12, Décembre 2006
Page(s) 1087 - 1094
Section M/S revues
Publié en ligne 15 décembre 2006
  1. Tuteja N, Tuteja R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 2004; 271 : 1835–48. [Google Scholar]
  2. Gorbalenya AE, Koonin EV, Donchenko AP, et al. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 1989; 17 : 4713–30. [Google Scholar]
  3. Subramanya HS, Bird LE, Brannigan JA, et al. Crystal structure of a DExx box DNA helicase. Nature 1996; 384 : 379–83. [Google Scholar]
  4. Cordin O, Tanner NK, Doere M, et al. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 2004; 23 : 2478–87. [Google Scholar]
  5. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol 2002; 12 : 123–33. [Google Scholar]
  6. von Hippel PH, Delagoutte E. Macromolecular complexes that unwind nucleic acids. Bioessays 2003; 25 : 1168–77. [Google Scholar]
  7. Dip R, Camenisch U, Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst) 2004; 3 : 1409–23. [Google Scholar]
  8. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003; 85 : 1101–11. [Google Scholar]
  9. Weeda G, van Ham RC, Vermeulen W, et al. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 1990; 62 : 777–91. [Google Scholar]
  10. Weber CA, Salazar EP, Stewart SA, et al. ERCC2 : cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9 : 1437–47. [Google Scholar]
  11. Schaeffer L, Roy R, Humbert S, et al. DNA repair helicase : a component of BTF2 (TFIIH) basic transcription factor. Science 1993; 260 : 58–63. [Google Scholar]
  12. Schaeffer L, Moncollin V, Roy R, et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J 1994; 13 : 2388–92. [Google Scholar]
  13. Egly JM. The 14th Datta lecture. TFIIH : from transcription to clinic. FEBS Lett 2001; 498 : 124–8. [Google Scholar]
  14. Zurita M, Merino C. The transcriptional complexity of the TFIIH complex. Trends Genet 2003; 19 : 578–84. [Google Scholar]
  15. Giglia-Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004; 36 : 714–9. [Google Scholar]
  16. Coin F, Proietti DS, Nardo T, et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell 2006; 21 : 215–26. [Google Scholar]
  17. Reardon JT, Ge H, Gibbs E, et al. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes : ERCC2/CAK and TFIIH. Proc Natl Acad Sci USA 1996; 93 : 6482–7. [Google Scholar]
  18. Tirode F, Busso D, Coin F, et al. Reconstitution of the transcription factor TFIIH : assignment of functions for the three enzymatic subunits XPB, XPD and cdk7. Mol Cell 1999; 3 : 87–95. [Google Scholar]
  19. Schultz P, Fribourg S, Poterszman A, et al. Molecular structure of human TFIIH. Cell 2000; 102 : 599–607. [Google Scholar]
  20. Araujo SJ, Tirode F, Coin F, et al. Nucleotide excision repair of DNA with recombinant human proteins : definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 2000; 14 : 349–59. [Google Scholar]
  21. Winkler GS, Araujo SJ, Fiedler U, et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem 2000; 275 : 4258–66. [Google Scholar]
  22. Coin F, Auriol J, Tapias A, et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J 2004; 23 : 4835–46. [Google Scholar]
  23. Bradsher J, Coin F, Egly JM. Distinct roles for the helicases of TFIIH in transcript initiation and promoter escape. J Biol Chem 2000; 275 : 2532–8. [Google Scholar]
  24. Lin YC, Choi WS, Gralla JD. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat Struct Mol Biol 2005; 12 : 603–7. [Google Scholar]
  25. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy : update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 2001; 44 : 891–920. [Google Scholar]
  26. Bootsma D, Hoeijmakers JH. DNA repair. Engagement with transcription. Nature 1993; 363 : 114–5. [Google Scholar]
  27. Dubaele S, Proietti DS, Bienstock RJ, et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 2003; 11 : 1635–46. [Google Scholar]
  28. Botta E, Nardo T, Lehmann AR, et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy Hum Mol Genet 2002; 11 : 2919–28. [Google Scholar]
  29. de Boer J, van Steeg H, Berg RJ, et al. Mouse model for the DNA repair/basal transcription disorder trichothiodystrophy reveals cancer predisposition. Cancer Res 1999; 59 : 3489–94. [Google Scholar]
  30. Viprakasit V, Gibbons RJ, Broughton BC, et al. Mutations in the general transcription factor TFIIH result in beta-thalassaemia in individuals with trichothiodystrophy. Hum Mol Genet 2001; 10 : 2797–802. [Google Scholar]
  31. Liu J, He L, Collins I, et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 2000; 5 : 331–41. [Google Scholar]
  32. Keriel A, Stary A, Sarasin A, et al. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARa. Cell 2002; 109 ; 125–35. [Google Scholar]
  33. de Boer J, Andressoo JO, de Wit J, et al. Premature aging in mice deficient in DNA repair and transcription. Science 2002; 296 : 1276–9. [Google Scholar]
  34. Da Costa RM, Riou L, Paquola A, et al. Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele. Oncogene 2005; 24 : 1359–74. [Google Scholar]
  35. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996; 272 : 258–62. [Google Scholar]
  36. Ellis NA, Groden J, Ye TZ, et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995; 83 : 655–66. [Google Scholar]
  37. Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome Nat Genet 1999; 22 : 82–4. [Google Scholar]
  38. Mohaghegh P, Hickson ID. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders Hum Mol Genet 2001; 10 : 741–6. [Google Scholar]
  39. Hickson ID. RecQ helicases : caretakers of the genome. Nat Rev Cancer 2003; 3 : 169–78. [Google Scholar]
  40. Gray MD, Shen JC, Kamath-Loeb AS, et al. The Werner syndrome protein is a DNA helicase. Nat Genet 1997; 17 : 100–3. [Google Scholar]
  41. Karow JK, Chakraverty RK, Hickson ID. The Bloom’s syndrome gene product is a 3’→5’ DNA helicase. J Biol Chem 1997; 272 : 30611–4. [Google Scholar]
  42. Macris MA, Krejci L, Bussen W, et al. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair (Amst) 2006 : 5 : 172–80. [Google Scholar]
  43. Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J 2003; 22 : 4910–21. [Google Scholar]
  44. Bernstein DA, Keck JL. Conferring substrate specificity to DNA helicases : role of the RecQ HRDC domain. Structure (Camb) 2005; 13 : 1173–82. [Google Scholar]
  45. Huang S, Li B, Gray MD, et al. The premature ageing syndrome protein, WRN, is a 3’→5’ exonuclease. Nat Genet 1998; 20 : 114–6. [Google Scholar]
  46. Opresko PL, Cheng WH, Bohr VA. Junction of RecQ helicase biochemistry and human disease. J Biol Chem 2004; 279 : 18099–102. [Google Scholar]
  47. Li JL, Harrison RJ, Reszka AP, et al. Inhibition of the Bloom’s and Werner’s syndrome helicases by G-quadruplex interacting ligands. Biochemistry 2001; 40 : 15194–202. [Google Scholar]
  48. Courcelle J, Donaldson JR, Chow KH, et al. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 2003; 299 : 1064–7. [Google Scholar]
  49. Cobb JA, Bjergbaek L, Shimada K, et al. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 2003; 22 : 4325–36. [Google Scholar]
  50. Khakhar RR, Cobb JA, Bjergbaek L, et al. RecQ helicases : multiple roles in genome maintenance. Trends Cell Biol 2003; 13 : 493–501. [Google Scholar]
  51. Laursen LV, Bjergbaek L, Murray JM, et al. RecQ helicases and topoisomerase III in cancer and aging. Biogerontology 2003; 4 : 275–87. [Google Scholar]
  52. Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003; 426 : 870–4. [Google Scholar]
  53. Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 2005; 577 : 237–51. [Google Scholar]
  54. Meetei AR, Medhurst AL, Ling C, et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 2005; 37 : 958–63. [Google Scholar]
  55. Yang Q, Zhang R, Wang XW, et al. The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. J Biol Chem 2002; 277 : 31980–7. [Google Scholar]
  56. Papadopoulo D, Moustacchi E. L’anémie de Fanconi : gènes et fonction(s) revisités. Med Sci (Paris) 2005; 21 : 730–6. [Google Scholar]
  57. Mosedale G, Niedzwiedz W, Alpi A, et al. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol 2005; 12 : 763–71. [Google Scholar]
  58. Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001; 105 : 149–60. [Google Scholar]
  59. Levran O, Attwooll C, Henry RT, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 2005; 37 : 931–3. [Google Scholar]
  60. Levitus M, Waisfisz Q, Godthelp BC, et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 2005; 37 : 934–5. [Google Scholar]
  61. Bridge WL, Vandenberg CJ, Franklin RJ, et al. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 2005; 37 : 953–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.