Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 11, Novembre 2005
Page(s) 954 - 961
Section M/S revues
DOI https://doi.org/10.1051/medsci/20052111954
Publié en ligne 15 novembre 2005
  1. Hall CM. International nosology and classification of constitutional disorders of bone (2001). Am J Med Genet 2002; 113 : 65–77. [Google Scholar]
  2. Chapman KL, Mortier GR, Chapman K, et al. Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia. Nat Genet 2001; 28 : 393–6. [Google Scholar]
  3. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423 : 332–6. [Google Scholar]
  4. Karsenty G. The complexities of skeletal biology. Nature 2003; 423 : 316–8. [Google Scholar]
  5. Zelzer E, Olsen BR. The genetic basis for skeletal diseases. Nature 2003; 423 : 343–8. [Google Scholar]
  6. Kobayashi T, Kronenberg H. Minireview : transcriptional regulation in development of bone. Endocrinology 2005; 146 : 1012–7. [Google Scholar]
  7. Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell 1997; 90 : 979–90. [Google Scholar]
  8. Lewandoski M, Sun X, Martin GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 2000; 26 : 460–3. [Google Scholar]
  9. Xu X, Weinstein M, Li C, et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 1998; 125 : 753–65. [Google Scholar]
  10. Vogt TF, Duboule D. Antagonists go out on a limb. Cell 1999; 99 : 563–6. [Google Scholar]
  11. Hall BK, Miyake T. All for one and one for all : condensations and the initiation of skeletal development. Bioessays 2000; 22 : 138–47. [Google Scholar]
  12. Kolpakova E, Olsen BR. Wnt/beta-catenin: a canonical tale of cell-fate choice in the vertebrate skeleton. Dev Cell 2005; 8 : 626–7. [Google Scholar]
  13. Akiyama H, Chaboissier MC, Martin JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002; 16 : 2813–28. [Google Scholar]
  14. Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation. Nat Genet 1999; 22 : 85–9. [Google Scholar]
  15. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79 : 1111–20. [Google Scholar]
  16. Long F, Zhang XM, Karp S, et al. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 2001; 128 : 5099–108. [Google Scholar]
  17. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2 : 389–406. [Google Scholar]
  18. Beier F, Ali Z, Mok D, et al. TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell 2001; 12 : 3852–63. [Google Scholar]
  19. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103 : 211–25. [Google Scholar]
  20. Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994; 371 : 252–4. [Google Scholar]
  21. Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders : the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrinol Rev 2000; 21 : 23–39. [Google Scholar]
  22. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002; 16 : 1446–65. [Google Scholar]
  23. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, et al. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone 2004; 34 : 26–36. [Google Scholar]
  24. Lievens PM, Mutinelli C, Baynes D, et al. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling. J Biol Chem 2004; 279 : 43254–60. [Google Scholar]
  25. Segev O, Chumakov I, Nevo Z, et al. Restrained chondrocyte proliferation and maturation with abnormal growth plate vascularization and ossification in human FGFR-3(G380R) transgenic mice. Hum Mol Genet 2000; 9 : 249–58. [Google Scholar]
  26. Iwata T, Chen L, Li C, et al. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 2000; 9 : 1603–13. [Google Scholar]
  27. Chen L, Li C, Qiao W, et al. A Ser(365)->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001; 10 : 457–65. [Google Scholar]
  28. Clemens TL, Cormier S, Eichinger A, et al. Parathyroid hormone-related protein and its receptors : nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134 : 1113–36. [Google Scholar]
  29. Cormier S, Delezoide AL, Benoist-Lasselin C, et al. Parathyroid hormone receptor type 1/Indian hedgehog expression is preserved in the growth plate of human fetuses affected with fibroblast growth factor receptor type 3 activating mutations. Am J Pathol 2002; 161 : 1325–35. [Google Scholar]
  30. Jüppner H, Schipani E, Silve C. Jansen’s metaphyseal chondrodysplasia and Blomstrand’s lethal chondrodysplasia : two genetic disorders caused by PTH/PTHrP receptor mutations. In : Bilezikian J, Raisz L, Rodan G, eds. Principles of bone biology, vol. 2. San Diego, CA: Academic Press, 2002: 1117–35. [Google Scholar]
  31. Duchatelet S, Ostergaard E, Cortes D, et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005; 14 : 1–5. [Google Scholar]
  32. Hopyan S, Gokgoz N, Poon R, et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat Genet 2002; 30 : 306–10. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.