Accès gratuit
Med Sci (Paris)
Volume 20, Numéro 6-7, Juin-Juillet 2004
Page(s) 679 - 684
Section M/S revues
Publié en ligne 15 juin 2004
  1. Auger FA. Le génie tissulaire : du rêve à la réalité. Med Sci (Paris) 2000; 16 : 1324–31. [Google Scholar]
  2. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999; 284 : 489–93. [Google Scholar]
  3. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 1999; 85 : 1173–8. [Google Scholar]
  4. Parikh SA, Edelman ER. Endothelial cell delivery for cardiovascular therapy. Adv Drug Deliv Rev 2000; 42 : 139–61. [Google Scholar]
  5. Kong X, Grabitz RG, van OW, et al. Effect of biologically active coating on biocompatibility of Nitinol devices designed for the closure of intra-atrial communications. Biomaterials 2002; 23 : 1775–83. [Google Scholar]
  6. Bisson I, Kosinski M, Ruault S, et al. Acrylic acid grafting and collagen immobilization on poly(ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 2002; 23 : 3149–58. [Google Scholar]
  7. Montdargent B, Letourneur D. Toward new biomaterials. Infect Control Hosp Epidemiol 2000; 21 : 404–10. [Google Scholar]
  8. Porte-Durrieu MC, Labrugere C, Villars F, et al. Development of RGD peptides grafted onto silica surfaces : XPS characterization and human endothelial cell interactions. J Biomed Mater Res 1999; 46 : 368–75. [Google Scholar]
  9. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002; 60 : 217–23. [Google Scholar]
  10. Lateef SS, Boateng S, Hartman TJ, et al. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials 2002; 23 : 3159–68. [Google Scholar]
  11. Quirk RA, Chan WC, Davies MC, et al. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 2001; 22 : 865–72. [Google Scholar]
  12. Verrier S, Pallu S, Bareille R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 2002; 23 : 585–96. [Google Scholar]
  13. Jeschke B, Meyer J, Jonczyk A, et al. RGD-peptides for tissue engineering of articular cartilage. Biomaterials 2002; 23 : 3455–63. [Google Scholar]
  14. Nakayama Y, Ji-Youn K, Nishi S, et al. Development of high-performance stent : Gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res 2001; 57 : 559–66. [Google Scholar]
  15. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents : one-year angiographic and intravascular ultrasound follow-up. Circulation 2001; 104 : 2007–11. [Google Scholar]
  16. Deux JF, Meddahi-Pelle A, Le Blanche AF, et al. Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model. Arterioscler Thromb Vasc Biol 2002; 22 : 1604–9. [Google Scholar]
  17. Deux JF, Prigent-Richard S, d’Angelo G, et al. A chemically modified dextran inhibits smooth muscle cell growth in vitro and intimal in stent hyperplasia in vivo. J Vasc Surg 2002; 35 : 973–81. [Google Scholar]
  18. Feldman LJ, Aguirre L, Ziol M, et al. Interleukin-10 inhibits intimal hyperplasia after angioplasty or stent implantation in hypercholesterolemic rabbits. Circulation 2000; 101 : 908–16. [Google Scholar]
  19. Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking. J Vasc Surg 1984; 1 : 279–89. [Google Scholar]
  20. Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients : a 9-year experience. Surgery 1999; 126 : 847–55. [Google Scholar]
  21. Kaushal S, Amiel GE, Guleserian KJ, et al. Functionnal small-diameter neovessels created using endothelial progenitor cells expended ex vivo. Nat Med 2001; 7 : 1035–40. [Google Scholar]
  22. Radomski M, Jarell B, Pratt K, et al. Effects of in vitro aging on human endothelial cell adherence to dacron vascular graft materials. J Vasc Surg 1989; 47 : 173–7. [Google Scholar]
  23. Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, et al. Phenotypic and functional changes in regenerated porcine coronary endothelial cells : Increased uptake of modified LDL and reduced production of NO. Circ Res 2000; 2000 : 854–61. [Google Scholar]
  24. Pittenger MF, Mackay AM, Beck SC. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 : 143–7. [Google Scholar]
  25. Kadner A, Hoerstrup SP, Zund G, et al. A new source for cardiovascular tissue engineering : human bone marrow stromal cells. Eur J Cardiothorac Surg 2002; 21 : 1055–60. [Google Scholar]
  26. Gomes D, Louedec L, Plissonnier D, et al. Endoluminal smooth muscle cell seeding limits intimal hyperplasia. J Vasc Surg 2001; 34 : 707–15. [Google Scholar]
  27. Pierce EC. Autologous tissue tubes for aortic grafts in dogs. Surgery 1953; 33 : 648. [Google Scholar]
  28. L’Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998; 12 : 47–56. [Google Scholar]
  29. Tranquillo RT, Girton TS, Bromberek BA, et al. Magnetically-oriented tissue equivalent tubes. Biomaterials 1995; 17 : 349–53. [Google Scholar]
  30. Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts : morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg 1994; 19 : 446–56. [Google Scholar]
  31. Field PL. The chemically treated bovine ureter. Clinical performance of a nouvel biological vascular prosthesis. Cardiovasc Surg 2003; 11 : 30–4. [Google Scholar]
  32. Tsukagoshi T, Yenidunya MO, Sasaki E, et al. Experimental vascular graft using small-caliber fascia-wrapped fibrocollagenous tube : short-term evaluation. J Reconstr Microsurg 1999; 15 : 127–31. [Google Scholar]
  33. Huynh T, Abraham G, Murray J, et al. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 1999; 17 : 1083–6. [Google Scholar]
  34. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986; 231 : 397–400. [Google Scholar]
  35. Niklason LE. Techview : medical technology. Replacement arteries made to order. Science 1999; 286 : 1493–4. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.