Accès gratuit
Numéro
Med Sci (Paris)
Volume 20, Numéro 4, Avril 2004
Page(s) 458 - 463
Section Dossier technique
DOI https://doi.org/10.1051/medsci/2004204458
Publié en ligne 15 avril 2004
  1. Labuza TP. Sorption phenomena in foods : theoretical and practical aspects. In : Rha CK, ed. Theory determination and control of physical properties of food materials. Dordrecht : Reidel D, 1975 : 197–219. [Google Scholar]
  2. Chaveron H. Molécules toxiques. Molécules formées au cours des réactions d’oxydation. In : Chaveron H, ed. Introduction à la toxicologie nutritionnelle. Londres : Tec Et Doc, 1999 : 175–83. [Google Scholar]
  3. Moll M, Moll N. Les autres additifs. Les antioxygènes. In : Moll M, Moll N eds. Additifs alimentaires et auxiliaires technologiques, 2e ed, série Agro-Alimentaire. Paris : Dunod, 1998 : 89–99. [Google Scholar]
  4. Penfield MP, Campbell AM. Fats and their lipids constituents. Chemical reactions of lipids. In : Penfield MP, Campbell AM. eds. Experimental food science, 3e ed. San Diego : Academic Press, 1990 : 340–7. [Google Scholar]
  5. Gordon MH. The mechanism of antioxidant action in vitro. In : Hudson BJF, ed. Food antioxydants. Amsterdam : Elsevier, 1990 : 1–18. [Google Scholar]
  6. Moure A, Cruz JM, Franco D, et al. Natural antioxidants from residual sources. Food Chem 2001; 72 : 45–171. [Google Scholar]
  7. Krings U, El-Saharty YS, El-Zeany BA, et al. Antioxidant activity of some extracts from roasted wheat germ. Food Chem 2000; 71 : 91–5. [Google Scholar]
  8. Pryor WA, Cornicelli JA, Devall LJ, et al. A rapid screening test to determine the antioxidants potencies of natural and synthetic antioxydants. J Org Chem 1993; 58 : 3521–32. [Google Scholar]
  9. McDonald RE, Hultin HO. Some characteristics of the enzymic lipid peroxidation system in the microsomal fraction of flounder skeletal muscle. J Food Sci 1987; 52 : 15–27. [Google Scholar]
  10. Mitsuda H, Yasumoto K, Iwami K. Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo Shokuryou 1966; 19 : 210–4. [Google Scholar]
  11. Yen GC, Duh PD, Chuang DY. Antioxidant activity of anthraquinones and anthrone. Food Chem 2000; 70 : 437–41. [Google Scholar]
  12. Osawa T, Namiki M. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agric Biol Chem 1981; 45 : 735–9. [Google Scholar]
  13. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 2001; 73 : 285–90. [Google Scholar]
  14. Siu GM, Draper HH. A survey of the malonaldehyde content of retail meats and fish. J Food Sci 1978; 43 : 1147–9. [Google Scholar]
  15. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86 : 271–8. [Google Scholar]
  16. Fernandez J, Perez-Alvarez JA, Fernandez-Lopez JA. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem 1997; 59 : 345–53. [Google Scholar]
  17. Mansour EH, Khalil AH. Evaluation of antioxidant activity of some plant extracts and their application to ground beef patties. Food Chem 2000; 69 : 135–41. [Google Scholar]
  18. McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem 2001; 73 : 73–84. [Google Scholar]
  19. Kumazawa H, Oyama T. Estimation of total carbonyl content in oxidized oil by 2,4-dinitrophenylhydrazine. Yukagaku 1965; 14 : 15–9. [Google Scholar]
  20. Lu Y, Foo LY. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 2000; 68 : 81–5. [Google Scholar]
  21. Terao J. Antioxidant activity of beta-carotene-related carotenoids in solution. Lipids 1989; 24 : 659–61. [Google Scholar]
  22. Cuvelier ME, Berset C, Richard H. Use of a new test for determining comparative antioxidative activity of butylated hydroxyanisole, butylated hydroxytoluene, alpha- and gamma-tocopherols and extracts from rosemary and sage. Sciences des Aliments 1990; 10 : 797–806. [Google Scholar]
  23. Miller NJ, Rice-Evans CA. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem 1997; 60 : 331–7. [Google Scholar]
  24. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 2001; 73 : 239–44. [Google Scholar]
  25. Benavente-Garcia O, Castillo J, Lorente J, et al. Antioxidant activity of phenolics extracted from olea europaea L leaves. Food Chem 2000; 68 : 457–62. [Google Scholar]
  26. Miller NJ, Sampson J, Candeias LP, et al. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996; 384 : 240–2. [Google Scholar]
  27. Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26 : 1231–7. [Google Scholar]
  28. Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 1999; 26 : 285–94. [Google Scholar]
  29. Van Den Berg R, Haenen GR, Van Den Berg H, et al. The predictive value of the antioxidant capacity of structurally related flavonoids using the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem 2000; 70 : 391–5. [Google Scholar]
  30. Cao G, Verdon CP, Wu AH, et al. Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 1995; 41 : 1738–44. [Google Scholar]
  31. Cao G, Sofic E, Prior RL. Anioxidant and prooxidant behavior of flavonoids : structure-activity relationships. Free Radic Biol Med 1997; 22 : 749–60. [Google Scholar]
  32. Cao G, Sofic E, Prior RL. Antioxidant capacity of tea and common vegetables. J Agric Food Chem 1996; 44 : 3426–31. [Google Scholar]
  33. Wang H, Cao G, Prior RL. Total antioxydant capacity of fruits. J Agric Food Chem 1996; 44 : 701–5. [Google Scholar]
  34. Saija A, Trombetta D, Tomaino A, et al. In vitro evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int J Pharm 1998; 166 : 123–33. [Google Scholar]
  35. Sreejayan N, Rao MN. Free radical scavenging activity of curcuminoids. Arzneimittelforschung 1996; 46 : 169–71. [Google Scholar]
  36. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss U-Technol 1995; 28 : 25–30. [Google Scholar]
  37. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in Licorice roots; their relative astringency and radical sacvenging effects. Chem Pharm Bull 1998; 36 : 2090–7. [Google Scholar]
  38. PT, White TAC, McPhail DB, Duthie GG. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potentiel of fruit juices. Food Chem 2000; 68 : 471–4. [Google Scholar]
  39. Gardner PT, McPhail DB, Crozier A, Duthie GG. Electron spin resonance (ERS) spectroscopic assessment of the contribution of quercetin and other flavonols to the antioxidant capacity of red wines. J Sci Food Agric 1999; 79 : 1011–4. [Google Scholar]
  40. Prior RL, Cao G. In vitro total antioxidant capacity : comparison of different analytical methods. Free Radic Biol Med 1999; 27 : 1173–81. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.