Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 8-9, Août-Septembre 2003
Page(s) 827 - 833
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20031989827
Publié en ligne 15 août 2003
  1. Owen OE, Reichard GA, Patel MS, Boden G. Energy metabolism in feasting and fasting. In: Klachko DM, Anderson RR, Heimberg M, eds. Hormone and energy metabolism. New York: Plenum Press, 1979: 169–88.
  2. Reaven GM, Hollenbeck CB, Jen CY, Wu MS, Chen YDI. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37: 1020–4.
  3. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; I: 785–9.
  4. Randle PJ, Kerbey AL, Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev 1988; 4: 623–8.
  5. Zierler KL. Fatty acids as substrates for heart and skeletal muscle. Circ Res 1976; 39: 459–63.
  6. Girard J. Rôle des acides gras libres dans l’insulinorésistance au cours du diabète non-insulinodépendant. Diabete Metab 1995; 21: 79–88.
  7. Boden G. Effects of free fatty acids on gluconeogenesis and glycogenolysis. Life Sci 2003; 72: 977–88.
  8. Girard J. Acides gras, insulinosécrétion et lipotoxicité. Med Ther Endocrinol 2000; 2 (suppl2): 29–36.
  9. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 1995; 44: 863–70.
  10. Unger RH, The physiology of cellular liporegulation. Annu Rev Physiol 2003; 65: 333–47.
  11. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171–6.
  12. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270–4.
  13. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97: 2859–2865.
  14. Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS- 1-associated phosphatidylinositol 3- kinase activity. J Clin Invest 1999; 103: 253–9.
  15. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275: 8456–60.
  16. Gavrilova O, Marcus- Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271–8.
  17. Berne C. The metabolism of lipids in mouse pancreatic islets: the oxidation of fatty acids and ketone bodies. Biochem J 1975; 152: 661–6.
  18. Malaisse WJ, Malaisse- Lagae F, Sener A, Hellerström C. Participation of endogenous fatty acids in the secretory activity of the pancreatic β-cell. Biochem J 1985; 227: 995–1002.
  19. Grupping AY, Cnop M, Van Schravendijk C, Hannaert J, Van Berkel T, Pipeleers D. Low density lipoprotein binding and uptake by human and rat islet β-cells. Endocrinology 1997; 138: 4064–8.
  20. Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996; 97: 2728–35.
  21. Mason TM, Goh T, Tchipashvili V, et al. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes 1999; 48: 524–30.
  22. Paolisso G, Gambardella A, Amato L, et al. Opposite effects of short- and longterm fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 1995; 38: 1295–9.
  23. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 2002; 51 (suppl3): S405–13.
  24. McGarry JD. What if Minkowski had been ageusic ? An alternative angle on diabetes. Science 1992; 258: 766–70.
  25. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7–18.
  26. Unger RH. How obesity causes diabetes in Zucker diabetic fatty rats. Trends Endocrinol Metab 1997; 8: 276–82.
  27. McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999; 42: 128–38.
  28. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998; 47: 358–64.
  29. Man ZW, Zhu M, Noma Y, et al. Impaired β-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes 1997; 46: 1718–24.
  30. Unger RH. Lipotoxic diseases. Annu Rev Med 2002; 53: 319–36.
  31. Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA 1999; 96: 2327–32.
  32. Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores β-cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273: 3547–50.
  33. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH. Troglitazone prevents mitochondrial alterations, β-cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 1999; 96: 11513–8.
  34. Marshak S, Leibowitz G, Bertuzzi F, et al. Impaired β-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes 1999; 48: 1230–6.
  35. Poitout V, Robertson RP. Secondary β-cell failure in type 2 diabetes. A convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143: 339–42.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.