Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 2, Février 2002
Page(s) 217 - 225
Section M/S Revues : Dossier Technique
Publié en ligne 15 février 2002
  1. Menger MD, Lehr HA. Scope and perspectives of intravital microscopybridge over from in vitro to in vivo. Immunol Today 1993; 14 : 519–22. [Google Scholar]
  2. Jain RK, Schlenger K, Hockel M, Yuan F. Quantitative angiogenesis assays : progress and problems. Nat Med 1997; 3 : 1203–8. [Google Scholar]
  3. Sandison JC. A new method for the microscopic study of living tissues by the introduction of a transparent chamber in the rabbit’s ear. Anat Rec 1924; 28 : 281–7. [Google Scholar]
  4. Algire GH. An adaptation of the transparent chamber technique to the mouse. J Natl Cancer Inst 1942; 4 : 1–11. [Google Scholar]
  5. Ide AG, Baker NH, Warren SL. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 1939; 42 : 891–9. [Google Scholar]
  6. Intaglietta M, Zweifach BW. Microcirculatory basis of fluid exchange. Adv Biol Med Phys 1974; 15 : 111–59. [Google Scholar]
  7. Endrich B, Asaishi K, Goetz A, Messmer K. Technical report. A new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med 1980; 177 : 125–34. [Google Scholar]
  8. Manjunath N, Shankar P, Stockton B, Dubey PD, Lieberman J, von Andrian UH. A transgenic mouse model to analyze CD8(+) effector T cell differentiation in vivo. Proc Natl Acad Sci USA 1999; 96 : 13932–7. [Google Scholar]
  9. Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody : novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res 1996; 56 : 4032–9. [Google Scholar]
  10. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 1994; 54 : 3352–6. [Google Scholar]
  11. Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 1997; 151 : 679–88. [Google Scholar]
  12. Vajkoczy P, Ullrich A, Menger MD. Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2000; 2 : 53–61. [Google Scholar]
  13. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 1998; 18 : 510–20. [Google Scholar]
  14. Schmidt J, Ryschich E, Daniel V, et al. Vascular structure and microcirculation of experimental pancreatic carcinoma in rats. Eur J Surg 2000; 166 : 328–35. [Google Scholar]
  15. Endrich B, Hammersen F, Gotz A, Messmer K. Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst 1982; 68 : 475–85. [Google Scholar]
  16. Vajkoczy P, Menger MD, Goldbrunner R, et al. Targeting angiogenesis inhibits tumor infiltration and expression of the pro-invasive protein SPARC. Int J Cancer 2000; 87 : 261–8. [Google Scholar]
  17. Debbage PL, Griebel J, Ried M, Gneiting T, DeVries A, Hutzler P. Lectin intravital perfusion studies in tumorbearing mice : micrometerresolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J Histochem Cytochem 1998; 46 : 627–39. [Google Scholar]
  18. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994; 54 : 4564–8. [Google Scholar]
  19. Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels : role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998; 95 : 4607–12. [Google Scholar]
  20. Monsky WL, Fukumura D, Gohongi T, et al. Augmentation of transvascular tranport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 1999; 59 : 4129–35. [Google Scholar]
  21. Yuan Y, Mier RA, Chilian WM, Zawieja DC, Granger HJ. Interaction of neutrophils and endothelium in isolated coronary venules and arterioles. Am J Physiol 1995; 268 : H490–8. [Google Scholar]
  22. Baish JW, Gazit Y, Berk DA, Nozue M, Baxter LT, Jain RK. Role of tumor vasculature architecture in nutrient and drug delivery : an invasion percolation-based network model. Microvasc Res 1996; 51 : 327–46. [Google Scholar]
  23. Vajkoczy P, Goldbrunner R, Farhadi M, et al. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel FlK-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1999; 1 : 31–41. [Google Scholar]
  24. Baish JW, Netti PA, Jain RK. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 1997; 53 : 128–41. [Google Scholar]
  25. Baish JW, Jain RK. Fractals and cancer. Cancer Res 2000; 60 : 3683–8. [Google Scholar]
  26. Butcher EC. Leukocyteendothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67 : 1033–6. [Google Scholar]
  27. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76 : 301–14. [Google Scholar]
  28. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272 : 60–6. [Google Scholar]
  29. von Andrian UH, Hasslen SR, Nelson RD, Erlandsen SL, Butcher EC. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 1995; 82 : 989–99. [Google Scholar]
  30. von Andrian UH. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 1996; 3 : 287–300. [Google Scholar]
  31. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Plateletmediated lymphocyte delivery to high endothelial venules. Science 1996; 273 : 252–5. [Google Scholar]
  32. von Andrian UH, M’Rini C. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes Commun 1998; 6 : 85–96. [Google Scholar]
  33. Fukumura D, Salehi HA, Witwer B, Tuma RF, Melder RJ, Jain RK. Tumor necrosis factor alphainduced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site and host strain. Cancer Res 1995; 55 : 4824–9. [Google Scholar]
  34. Jain RK, Koenig A, Dellian M, Fukumura D, Munn LL, Melder RJ. Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev 1996; 15 : 195–204. [Google Scholar]
  35. Suzuki T, Yanagi K, Ookawa K, Hatakeyama K, Ohshima N. Flow visualization of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope. Front Med Biol Eng 1996; 7 : 253–63. [Google Scholar]
  36. Dellian M, Abels C, Kuhnle GE, Goetz AE. Effects of photodynamic therapy on leucocyte-endothelium interaction: differences between normal and tumour tissue. Br J Cancer 1995; 72 : 1125–30. [Google Scholar]
  37. Funakoshi N, Onizuka M, Yanagi K, et al. A new model of lung metastasis for intravital studies. Microvasc Res 2000; 59 : 361–7. [Google Scholar]
  38. Chambers AF, MacDonald IC, Schmidt EE, et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 1995; 14 : 279–301. [Google Scholar]
  39. Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC. Critical steps in hematogenous metastasis : an overview. Surg Oncol Clin North Am 2001; 10 : 243–55. [Google Scholar]
  40. Farina KL, Wyckoff JB, Rivera J, et al. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res 1998; 58 : 2528–32. [Google Scholar]
  41. Jain RK. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res 1999; 5 : 1605–6. [Google Scholar]
  42. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999; 17 : 375–8. [Google Scholar]
  43. Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998; 94 : 715–725. [Google Scholar]
  44. Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol 2001;19 : 327–31. [Google Scholar]
  45. M’Rini C, von Andrian UH. Le recrutement des lymphocytes dans les ganglions lymphatiques : apports de la microscopie réalisée in situ sur animal vivant. Hématologie 1998; 4 : 180–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.