Accès gratuit
Numéro
Med Sci (Paris)
Volume 17, Numéro 12, Décembre 2001
Page(s) 1252 - 1259
Section Articles de Synthèse
DOI https://doi.org/10.1051/medsci/200117121252
Publié en ligne 15 décembre 2001
  1. De Vernejoul MC, Marie PJ. Cellules osseuses et remodelage osseux. In : Kuntz D, ed. Madadies métaboliques osseuses de l’adulte. Paris : Flammarion, 1996 : 3–16. [Google Scholar]
  2. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenshymal stem cells. Science 1999; 284 : 143–7. [Google Scholar]
  3. Aubin JE, Liu F. The osteoblast lineage. In : Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. New York : Academic Press, 1996 : 51–68. [Google Scholar]
  4. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrinol Rev 1993; 14 : 424–42. [Google Scholar]
  5. Triffitt JT. The stem cell of the osteoblast. In : Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. New York : Academic Press, 1996 : 39–50. [Google Scholar]
  6. Marie PJ. Osteoblasts and bone formation. In : Zaidi M, ed. Advances in organ biology : molecular and cellular biology of bone. Stamford, CT (USA): JAI Press, 1999; 5B : 401–27. [Google Scholar]
  7. Gehron Robey P. The biochemistry of bone. Endocrinol Metab Clin North Am 1989;18 : 858–902. [Google Scholar]
  8. Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 1999; 96 : 8156–60. [Google Scholar]
  9. Franceschi RT. The developmental control of osteoblast-specific gene expression : role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 1999; 10 : 40–57. [Google Scholar]
  10. Zimmerman D, Jin F, Leboy P, Hardy S, Damsky C. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol 2000; 220 : 2–15. [Google Scholar]
  11. Xu T, Bianco P, Fisher LW, et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 1998; 20 : 78–82. [Google Scholar]
  12. Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999; 99 : 81–92. [Google Scholar]
  13. Zhao W, Byrne MH, Wang Y, Krane SM. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 2000; 106 : 941–9. [Google Scholar]
  14. Wennberg C, Hessle L, Lundberg P, et al. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 2000; 15 : 1879–88. [Google Scholar]
  15. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrinol Rev 1999; 20 : 345–57. [Google Scholar]
  16. Grigoriadis AE, Wang ZQ, Wagner EF. Fos and bone cell development : lessons from a nuclear oncogene. Trends Genet 1995; 11 : 436–41. [Google Scholar]
  17. Sabatakos G, Sims NA, Chen J, et al. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 2000; 6 : 985–90. [Google Scholar]
  18. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 2000; 6 : 980–4. [Google Scholar]
  19. Acampora D, Merla GR, Paleari L, et al. Craniofacial, vestibular and bone defects in mice lacking the distal-less-related gene Dlx5. Development 1999; 126 : 3795–809. [Google Scholar]
  20. Liu YH, Tang Z, Kundu RK, et al. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull : a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 1999; 205 : 260–74. [Google Scholar]
  21. Yousfi M, Lasmoles F, Lomri A, Delannoy Ph, Marie PJ. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in the Saethre-Chotzen syndrome. J Clin Invest 2001; 107 : 1153–61. [Google Scholar]
  22. Haÿ E, Lemonnier J, Modrowski D, Lomri A, Lasmoles F, Marie PJ. Bone mor-phogenetic protein-2 promotes human calvaria cell aggregation and osteoblast differentiation by increasing N-and E-cadherin expression. J Cell Physiol 2000; 183 : 117–28. [Google Scholar]
  23. Cheng SL, Shin CS, Towler DA, Civitelli R. A dominant negative cadherin inhibits osteoblast differentiation. J Bone Miner Res 2000; 15 : 2362–70. [Google Scholar]
  24. Lecanda F, Towler DA, Ziambaras K, et al. Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 1998; 9 : 2249–58. [Google Scholar]
  25. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 2000; 151 : 931–44. [Google Scholar]
  26. Strewler GJ. Local and systemic control of the osteoblast. J Clin Invest 2001; 107 : 271–2. [Google Scholar]
  27. Calvi LM, Sims NA, Hunzelman JL, et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 2001; 107 : 277–86. [Google Scholar]
  28. De Vernejoul MC, Marie PJ. Estrogènes et tissu osseux. Med Ther 2001; 2,1 : 29–33. [Google Scholar]
  29. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors : dissociation from transcriptional activity. Cell 2001; 104 : 719–30. [Google Scholar]
  30. Christakos S. Vitamin D gene regulation. In : Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. New York : Academic Press, 1996 : 435–46. [Google Scholar]
  31. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16 : 391–6. [Google Scholar]
  32. Gardiner EM, Baldock PA, Thomas GP, et al. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of osteoblastic lineage. FASEB J 2000; 14 : 1908–16. [Google Scholar]
  33. Lukert BP, Kream BE. Clinical and basic aspects of glucocorticoid action in bone. In : Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. New York : Academic Press, 1996 : 533–48. [Google Scholar]
  34. Manolagas SC. Birth and death of bone cells : basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrinol Rev 2000; 21 : 115–37. [Google Scholar]
  35. Bonnelye E, Merdad L, Kung V, Aubin JE. The orphan nuclear estrogen receptor-related receptor alpha (ERRalpha) is expressed throughout osteoblast differentiation and regulates bone formation in vitro. J Cell Biol 2001; 153 : 971–84. [Google Scholar]
  36. Meyer T, Kneissel M, Mariani J, Fournier B. In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism. Proc Natl Acad Sci USA 2000; 97 : 9197–202. [Google Scholar]
  37. Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts to transgenic mice : increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000; 141 : 2674–82. [Google Scholar]
  38. Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000; 105 : 935–43. [Google Scholar]
  39. Miyakoshi N, Richman C, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that IGF-binding protein-5 functions as a growth factor. J Clin Invest 2001;107 : 73–81. [Google Scholar]
  40. Erlebacher A, Derynck R. Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 1996; 132 : 195–210. [Google Scholar]
  41. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrinol Rev 2000; 21 : 393–411. [Google Scholar]
  42. Daluiski A, Engstrand T, Bahamonde ME, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001; 27 : 84–8. [Google Scholar]
  43. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286 : 1946–9. [Google Scholar]
  44. Marie PJ, Debiais F, Lomri A, Lemonnier J. Fibroblast growth factors and osteo-blasts. In : Canalis E, eds. Skeletal growth factors. New York : Lippincott, Williams and Wilkins 2000; 179–96. [Google Scholar]
  45. Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 2000; 105: 1085–93. [Google Scholar]
  46. Lomri A, Lemonnier J, Hott M, et al. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor-2 mutations in Apert syndrome. J Clin Invest 1998; 101 : 1310–7. [Google Scholar]
  47. Marie PJ, de Vernejoul MC. Facteurs systémiques et locaux du remodelage osseux. In : Kuntz D, ed. Maladies métaboliques osseuses de l’adulte. Paris : Flammarion, 1996 : 49–70. [Google Scholar]
  48. Marzia M, Sims NA, Voit S, et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biol 2000; 151 : 311–20. [Google Scholar]
  49. Marie PJ, de Pollak C, Chanson P, Lomri A. Increased osteoblastic cell proliferation associated with activating G mutation in monostotic and polyostotic fibrous dysplasia. Am J Pathol 1997; 150, 3 : 1059–69. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.