Accès gratuit
Numéro |
Med Sci (Paris)
Volume 29, Numéro 6-7, Juin–Juillet 2013
|
|
---|---|---|
Page(s) | 617 - 622 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2013296014 | |
Publié en ligne | 12 juillet 2013 |
- Lacampagne A, Fauconnier J, Richard S. Récepteur de la ryanodine et dysfonctionnement myocardique. Med Sci (Paris) 2008 ; 24 : 399–405. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bers DM. Cardiac excitation-contraction coupling. Nature 2002 ; 415 : 198–205. [CrossRef] [PubMed] [Google Scholar]
- Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev 2008 ; 88 : 919–982. [CrossRef] [PubMed] [Google Scholar]
- Lerebours G. Le rythme sinusal : mécanisme et fonction. Med Sci (Paris) 2007 ; 23 : 657–662. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Morel E, Marcantoni A, Gastineau M, et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 2005 ; 97 : 1296–1304. [CrossRef] [PubMed] [Google Scholar]
- Metrich M, Lucas A, Gastineau M, et al.Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 2008 ; 102 : 959–965. [CrossRef] [PubMed] [Google Scholar]
- Pereira L, Metrich M, Fernandez-Velasco M, et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007 ; 583 : 685–694. [CrossRef] [PubMed] [Google Scholar]
- Cazorla O, Lucas A, Poirier F, et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci USA 2009 ; 106 : 14144–14149. [CrossRef] [Google Scholar]
- Steinberg SF, Brunton LL. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 2001 ; 41 : 751–773. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Gao T, Puri TS, Gerhardstein BL, et al. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997 ; 272 : 19401–19407. [CrossRef] [PubMed] [Google Scholar]
- Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010 ; 327 : 1653–1657. [CrossRef] [PubMed] [Google Scholar]
- Scott JD, Santana LF. A-kinase anchoring proteins: getting to the heart of the matter. Circulation 2010 ; 121 : 1264–1271. [CrossRef] [PubMed] [Google Scholar]
- Fischmeister R, Castro LR, Abi-Gerges A, et al. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006 ; 99 : 816–828. [CrossRef] [PubMed] [Google Scholar]
- Patrucco E, Albergine MS, Santana LF, Beavo JA. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol 2010 ; 49 : 330–333. [CrossRef] [PubMed] [Google Scholar]
- Mika D, Leroy J, Vandecasteele G, Fischmeister R. PDEs create local domains of cAMP signaling. J Mol Cell Cardiol 2012 ; 52 : 323–329. [CrossRef] [PubMed] [Google Scholar]
- Osadchii OE. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 2007 ; 21 : 171–194. [CrossRef] [PubMed] [Google Scholar]
- Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 2004 ; 118 : 375–387. [CrossRef] [PubMed] [Google Scholar]
- Shakur Y, Holst LS, Landstrom TR, et al. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol 2001 ; 66 : 241–277. [CrossRef] [PubMed] [Google Scholar]
- Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 1987 ; 61 : 539–547. [CrossRef] [PubMed] [Google Scholar]
- Lugnier C, Muller B, Le Bec A, et al. Characterization of indolidan- and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J Pharmacol Exp Ther 1993 ; 265 : 1142–1151. [PubMed] [Google Scholar]
- Verde I, Vandecasteele G, Lezoualc’h F, Fischmeister R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 1999 ; 127 : 65–74. [CrossRef] [PubMed] [Google Scholar]
- Kerfant BG, Zhao D, Lorenzen-Schmidt I, et al. PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res 2007 ; 101 : 400–408. [CrossRef] [PubMed] [Google Scholar]
- Beca S, Ahmad F, Shen W, et al. PDE3A regulates basal myocardial contractility through interacting with SERCA2a-signaling complexes in mouse heart. Circ Res 2013 ; 112 : 289–297. [CrossRef] [PubMed] [Google Scholar]
- Sun B, Li H, Shakur Y, et al. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell Signal 2007 ; 19 : 1765–1771. [CrossRef] [PubMed] [Google Scholar]
- Kostic MM, Erdogan S, Rena G, et al. Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol 1997 ; 29 : 3135–3146. [CrossRef] [PubMed] [Google Scholar]
- Mokni W, Keravis T, Etienne-Selloum N, et al. Concerted regulation of cGMP, cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 2010 ; 5 : e14227. [CrossRef] [PubMed] [Google Scholar]
- Muller B, Lugnier C, Stoclet JC. Involvement of rolipram-sensitive cyclic AMP phosphodiesterase in the regulation of cardiac contraction. J Cardiovasc Pharmacol 1990 ; 16 : 796–803. [CrossRef] [PubMed] [Google Scholar]
- Leroy J, Abi-Gerges A, Nikolaev VO, et al. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 2008 ; 102 : 1091–1100. [CrossRef] [PubMed] [Google Scholar]
- Leroy J, Richter W, Mika D, et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J Clin Invest 2011 ; 121 : 2651–2661. [CrossRef] [PubMed] [Google Scholar]
- Beca S, Helli PB, Simpson JA, et al. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res 2011 ; 109 : 1024–1030. [CrossRef] [PubMed] [Google Scholar]
- Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 2005 ; 123 : 25–35. [CrossRef] [PubMed] [Google Scholar]
- Molina CE, Leroy J, Richter W, et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012 ; 59 : 2182–2190. [CrossRef] [PubMed] [Google Scholar]
- Amsallem E, Kasparian C, Haddour G, et al. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst Rev 2005 ; CD002230. [Google Scholar]
- Yan C, Miller CL, Abe J. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ Res 2007 ; 100 : 489–501. [CrossRef] [PubMed] [Google Scholar]
- Perino A, Ghigo A, Ferrero E, et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell 2011 ; 42 : 84–95. [CrossRef] [PubMed] [Google Scholar]
- Ghigo A, Perino A, Mehel H, et al. PI3Kgamma protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation 2012 ; 126 : 2073–2083. [CrossRef] [PubMed] [Google Scholar]
- Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure?. Circ Res 2003 ; 93 : 896–906. [CrossRef] [PubMed] [Google Scholar]
- Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 2009 ; 105 : 784–792. [CrossRef] [PubMed] [Google Scholar]
- Berthouze-Duquesnes M, Lucas A, Sauliere A, et al. Specific interactions between Epac1, beta-arrestin2 and PDE4D5 regulate beta-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal 2013 ; 25 : 970–980. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.