Accès gratuit
Numéro
Med Sci (Paris)
Volume 17, Numéro 12, Décembre 2001
Page(s) 1316 - 1321
Section Mini-Synthèses
DOI http://dx.doi.org/10.1051/medsci/200117121316
Publié en ligne 15 décembre 2001
  1. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279 : 509–14.
  2. Ory S, Jurdic P. Microtubules, compartiments cellulaires et GTPases Rho: ménage à trois pour une migration efficace. Med Sci 2001; 17 : 878–85.
  3. Gauthier-Rouviere C, Vignal E, Meriane M, Roux P, Montcourier P, Fort P. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell 1998; 9 : 1379–94.
  4. Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997; 11 : 2295–322.
  5. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature 1993; 366 : 643–54.
  6. Stam JC, Collard JG. The DH protein family, exchange factors for Rho-like GTPases. Prog Mol Subcell Biol 1999; 22 : 51–83.
  7. Lemmon MA, Ferguson KM. Signaldependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 2000; 350 : 1–18.
  8. Yao L, Janmey P, Frigeri LG, et al. Pleckstrin homology domains interact with filamentous actin. J Biol Chem 1999; 274 : 19752–61.
  9. Bellanger JM, Astier C, Sardet C, Ohta Y, Stossel TP, Debant A. The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2000; 2: 888–92.
  10. Han J, Luby-Phelps K, Das B, et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 1998; 279 : 558–60.
  11. Nimnual AS, Yatsula BA, Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 1998; 279 : 560–3.
  12. Streuli M, Krueger N,X, hall LR, Schlossman SF, Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leucocyte common antigen. J Exp Med 1988; 168 : 1523–30.
  13. Krueger NX, Van Vactor D, Wan HI, Gelbart WM, Goodman CS, Saito H. The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 1996; 84 : 611–22.
  14. Debant A, Serra-Pages C, Seipel K, et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac- specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci USA 1996; 93 : 5466–71.
  15. Blangy A, Vignal E, Schmidt S, Debant A, Gauthier-Rouvière CPF. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through direct activation of RhoG. J Cell Sci 2000; 113 : 729–39.
  16. Bellanger JM, Lazaro JB, Diriong S, Fernandez A, Lamb N, Debant A. The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo. Oncogene 1998; 16 : 147–52.
  17. Seipel K, O’Brien SP, Iannotti E, Medley QG, Streuli M. Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J Cell Sci 2001; 114 : 389–99.
  18. Stossel TP, Condeelis J, Cooley L, et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2001; 2 : 138–45.
  19. Cunningham CC, Gorlin JB, Kwiatkowski DJ, et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 1992; 255 : 325–7.
  20. Fox JW, Lamperti ED, Eksioglu YZ, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998; 21 : 1315–25.
  21. Medley QG, Serra-Pages C, Iannotti E, et al. The Trio guanine nucleotide exchange factor is a rhoA target : binding of rhoA to the Trio immunoglobulin-like domain. J Biol Chem 2000; 275 : 36116–23.
  22. Luo L. Rho-GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000; 1 : 173–80.
  23. Steven R, Kubiseski TJ, Zheng H, et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 1998; 92 : 785–95.
  24. Newsome TP, Schmidt S, Dietzl G, et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 2000; 101 : 283–94.
  25. Liebl EC, Forsthoefel DJ, Franco LS, et al. Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio’s role in axon pathfinding. Neuron 2000; 26 : 107–18.
  26. Bateman J, Shu H, Van Vactor D. The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron 2000; 26 : 93–106.
  27. Awasaki T, Saito M, Sone M, et al. The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 2000; 26 : 119–31.
  28. Wills Z, Bateman J, Korey CA, Comer A, Van Vactor D. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 1999; 22 : 301–12.
  29. O’Brien SP, Seipel K, Medley QG, Bronson R, Segal R, Streuli M. Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc Natl Acad Sci USA 2000; 97 : 12074–8.
  30. Alam MR, Johnson RC, Darlington DN, Hand TA, Mains RE, Eipper BA. Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptidylglycine alphaamidating monooxygenase, an integral membrane peptide-processing enzyme. J Biol Chem 1997; 272 : 12667–75.
  31. Colomer V, Engelender S, Sharp AH, et al. Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain. Hum Mol Genet 1997; 6 : 1519–25.
  32. Kawai T, Sanjo H, Akira S. Duet is a novel serine/threonine kinase with Dbl-Homology (DH) and Pleckstrin-Homology (PH) domains. Gene 1999; 227 : 249–55.
  33. Penzes P, Johnson RC, Sattler R, et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 2001; 29 : 229–42.