Accès gratuit
Cet article est une note pour : [cet article]

Med Sci (Paris)
Volume 30, Numéro 1, Janvier 2014
Page(s) 82 - 92
Section Traduction
Publié en ligne 8 octobre 2014
  1. Bailey C, Campbell I. Metformin: the gold standard; a scientific handbook Chichester, UK: Wiley, 2007: 288 p.
  2. Sterne J. Du nouveau dans les antidiabétiques. La NN diméthylamino guanyl guanidine (N.N.D.G.). Maroc Med 1957; 36: 1295–1296.
  3. UKPDS. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–865. [CrossRef] [PubMed]
  4. Stades AM, Heikens JT, Erkelens DW, et al. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Intern Med 2004; 255: 179–187. [CrossRef] [PubMed]
  5. Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998; 6: 47–53. [CrossRef] [PubMed]
  6. Lin HZ, Yang SQ, Chuckaree C, et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 6: 998–1003. [CrossRef] [PubMed]
  7. Marchesini G, Brizi M, Bianchi G, et al. Metformin in non-alcoholic steatohepatitis. Lancet 2001; 358: 893–894. [CrossRef] [PubMed]
  8. Foretz M, Viollet B. Mécanisme d’action hépatique de la metformine dans le diabète de type 2. Med Mal Metab 2009; 3: 48–54.
  9. Foretz M, Viollet B. Mécanisme d’inhibition de la production hépatique de glucose par la metformine. Med Sci (Paris) 2010; 26: 663–666. [CrossRef] [EDP Sciences] [PubMed]
  10. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403. [CrossRef] [PubMed]
  11. Rowan JA, Hague WM, Gao W, et al. Metformin versus insulin for the treatment of gestational diabetes. N Engl J Med 2008; 358: 2003–2015. [CrossRef] [PubMed]
  12. Lord JM, Flight IH, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003; 327: 951–953. [CrossRef] [PubMed]
  13. Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007; 117: 1422–1431. [CrossRef] [PubMed]
  14. Argaud D, Roth H, Wiernsperger N, Leverve XM. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem 1993; 213: 1341–1348. [CrossRef] [PubMed]
  15. El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275: 223–228. [CrossRef] [PubMed]
  16. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348: 607–614. [CrossRef] [PubMed]
  17. Logie L, Harthill J, Patel K, et al. Cellular responses to the metal-binding properties of metformin. Diabetes 2012; 61: 1423–1433. [CrossRef] [PubMed]
  18. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174 Foretz M, Taleux N, Guigas B, et al. Régulation du métabolisme énergétique par l’AMPK. Med Sci (Paris) 2006; 22: 381-8.. [CrossRef] [PubMed]
  19. Foretz M, Viollet B. Regulation of hepatic metabolism by AMPK. J Hepatol 2011; 54: 827–829. [CrossRef] [PubMed]
  20. Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642–1646. [CrossRef] [PubMed]
  21. Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355–2369. [CrossRef] [PubMed]
  22. Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494: 256–260. [CrossRef] [PubMed]
  23. Yin M, van der Horst IC, van Melle JP, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011; 301: H459–H468. [CrossRef] [PubMed]
  24. Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 2009; 104: 403–411. [CrossRef] [PubMed]
  25. MacDonald MR, Eurich DT, Majumdar SR, et al. Treatment of type 2 diabetes and outcomes in patients with heart failure: a nested case-control study from the U.K. General practice research database. Diabetes care 2010; 33: 1213–1218. [CrossRef] [PubMed]
  26. Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011; 60: 1770–1778. [CrossRef] [PubMed]
  27. Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005; 330 : 1304–1305. [CrossRef] [PubMed]
  28. Beck E, Scheen AJ. Quels bénéfices antitumoraux attendre de la metformine ? Ann Endocrinol (Paris) 2013; 74: 137–147. [CrossRef] [PubMed]
  29. Memmott RM, Mercado JR, Maier CR, et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res 2010; 3 : 1066–1076. [CrossRef]
  30. Viollet B, Foretz M. Metformine et cancer. Du diabète au cancer: de nouvelles perspectives thérapeutiques pour la metformine. Med Mal Metab 2011; 5: 29–37.
  31. Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 2006; 66 : 10269–10273. [CrossRef] [PubMed]
  32. Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576–3586. [CrossRef] [PubMed]
  33. Huang X, Wullschleger S, Shpiro N, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412: 211–221. [CrossRef] [PubMed]
  34. Ben Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011; 71: 4366–4372. [CrossRef] [PubMed]
  35. Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67: 6745–6752. [CrossRef] [PubMed]
  36. Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009; 460: 103–107. [CrossRef] [PubMed]
  37. Algire C, Moiseeva O, Deschenes-Simard X, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 2012; 5: 536–543. [CrossRef]
  38. Del Barco S, Vazquez-Martin A, Cufi S, et al. Metformin: multi-faceted protection against cancer. Oncotarget 2011; 2: 896–917. [PubMed]
  39. Cerezo M, Tichet M, Abbe P, et al. Metformin blocks melanoma invasion and metastasis development in a AMPK/p53-dependent manner. Mol Cancer Ther 2013; 12: 1605–1615. [CrossRef] [PubMed]
  40. Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27: 3297–3302. [CrossRef] [PubMed]
  41. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511. [CrossRef] [PubMed]
  42. Hwang YP, Jeong HG. Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12- myristate-13-acetate-induced/extracellular signal-regulated kinase/ activator protein-1. Br J Pharmacol 2010; 160: 1195–1211. [CrossRef] [PubMed]
  43. Shackelford DB, Abt E, Gerken L, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158. [CrossRef] [PubMed]
  44. Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 2010; 107 : 21830–21835. [CrossRef]
  45. Paintlia AS, Paintlia MK, Mohan S, et al. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. Am J Pathol 2013; 183: 526–541. [CrossRef] [PubMed]
  46. Ma TC, Buescher JL, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 2007; 411: 98–103. [CrossRef] [PubMed]
  47. Wang J, Gallagher D, DeVito LM, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 2012; 11: 23–35. [CrossRef] [PubMed]
  48. Anisimov VN, Berstein LM, Popovich IG, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3: 148–157. [PubMed]
  49. Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 2010; 5: e8758. [CrossRef] [PubMed]
  50. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153: 228–239. [CrossRef] [PubMed]
  51. Razungles J, Jalaguier S, Cavaillès V, Teyssier C. L’effet Warburg: de la théorie du cancer aux applications thérapeutiques en cancérologie. Med Sci (Paris) 2013; 11: in press.
  52. Foretz M, Taleux N, Guigas B, et al. Regulation of energy metabolism by AMPK: a novel therapeutic approach for the treatment of metabolic and cardiovascular diseases. Med Sci (Paris) 2006; 22: 381–388. [CrossRef] [EDP Sciences] [PubMed]
  53. Julien LA, Roux PP. mTOR, the mammalian target of rapamycin. Med Sci (Paris) 2010; 26: 1056–1060. [CrossRef] [EDP Sciences] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.