Accès gratuit
Cet article est une note pour : [cet article]

Med Sci (Paris)
Volume 29, Numéro 5, Mai 2013
Page(s) 487 - 494
Section Traduction
Publié en ligne 8 octobre 2014
  1. Chenais B. Transposable elements and human cancer: A causal relationship? Biochim Biophys Acta 2012; 1835: 28–35. [PubMed]
  2. Kazazian HH, Jr. Mobile elements: drivers of genome evolution. Science 2004; 303: 1626–1632. [CrossRef] [PubMed]
  3. Solyom S, Kazazian HH, Jr. Mobile elements in the human genome: implications for disease. Genome Med 2012; 4: 12. [CrossRef] [PubMed]
  4. Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442: 203–207. [PubMed]
  5. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442: 199–202. [PubMed]
  6. Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20: 1709–1714. [CrossRef] [PubMed]
  7. Watanabe T, Takeda A, Tsukiyama T, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 2006; 20: 1732–1743. [CrossRef] [PubMed]
  8. Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455: 1193–1197. [CrossRef] [PubMed]
  9. Czech B, Malone CD, Zhou R, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008; 453: 798–802. [CrossRef] [PubMed]
  10. Ghildiyal M, Seitz H, Horwich MD, et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 2008; 320: 1077–1081. [CrossRef] [PubMed]
  11. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNA: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12: 246–258. [CrossRef] [PubMed]
  12. Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128: 1089–1103. [CrossRef] [PubMed]
  13. Nishimasu H, Ishizu H, Saito K, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491: 284–287. [CrossRef] [PubMed]
  14. Ipsaro JJ, Haase AD, Knott SR, et al. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 2012; 491: 279–283. [CrossRef] [PubMed]
  15. Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127: 1193–1207. [CrossRef] [PubMed]
  16. Kawaoka S, Izumi N, Katsuma S, Tomari Y. 3’ end formation of PIWIinteracting RNAs in vitro. Mol Cell 2011; 43: 1015–1022. [CrossRef] [PubMed]
  17. Saito K, Sakaguchi Y, Suzuki T, et al. Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi-interacting RNAs at their 3’ ends. Genes Dev 2007; 21: 1603–1608. [CrossRef] [PubMed]
  18. De Fazio S, Bartonicek N, Di Giacomo M, et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 2011; 480: 259–263. [CrossRef] [PubMed]
  19. Reuter M, Berninger P, Chuma S, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 2011; 480: 264–267. [CrossRef] [PubMed]
  20. Aravin AA, Sachidanandam R, Girard A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007; 316: 744–747. [CrossRef] [PubMed]
  21. Aravin AA, Bourc’his D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 2008; 22: 970–975. [CrossRef] [PubMed]
  22. Vourekas A, Zheng Q, Alexiou P, et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 2012; 19: 773–81. [CrossRef] [PubMed]
  23. Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 2006; 103: 13415–13420. [CrossRef]
  24. Bagijn MP, Goldstein LD, Sapetschnig A, et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012; 337: 574–578. [CrossRef] [PubMed]
  25. Lee HC, Gu W, Shirayama M, et al. C. elegans piRNAs mediate the genomewide surveillance of germline transcripts. Cell 2012; 150: 78–87. [CrossRef] [PubMed]
  26. Ashe A, Sapetschnig A, Weick EM, et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012; 150: 88–99. [CrossRef] [PubMed]
  27. Brennecke J, Malone CD, Aravin AA, et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 2008; 322: 1387–1392. [CrossRef] [PubMed]
  28. Grentzinger T, Armenise C, Brun C, et al. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22: 1877–1888. [CrossRef] [PubMed]
  29. Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54: 78–92. [CrossRef] [PubMed]
  30. Chuma S, Pillai RS. Retrotransposon silencing by piRNAs: ping-pong players mark their sub-cellular boundaries. PLoS Genet 2009; 5: e100. [CrossRef] [PubMed]
  31. Tanaka T, Hosokawa M, Vagin VV, et al. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci USA 2011; 108: 10579–10584. [CrossRef]
  32. Tam OH, Aravin AA, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008; 453: 534–538. [CrossRef] [PubMed]
  33. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453: 539–543. [CrossRef] [PubMed]
  34. Wang J, Li LC. Small RNA and its application in andrology and urology. Transl Androl Urol 2012; 1: 33–43. [PubMed]
  35. Gu A, Ji G, Shi X, et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod 2010; 25: 2955–261. [CrossRef] [PubMed]
  36. Siddiqi S, Terry M, Matushansky I. Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS One 2012; 7: e33711. [CrossRef] [PubMed]
  37. Bamezai S, Rawat VP, Buske C. The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 2012; 30: 2603–2611. [CrossRef] [PubMed]
  38. Papin C, Simonelig M. Contrôle du développement embryonnaire par des petits ARN issus de transposons. Med Sci (Paris) 2011; 27: 1050–1052. [CrossRef] [EDP Sciences] [PubMed]
  39. Dunoyer P. La bataille du silence: mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sic (Paris) 2009; 25: 505–511. [CrossRef] [EDP Sciences] [PubMed]
  40. Robert V, Bruceton A. Regulation de expression des sequences repeats et interference par learn. Med Sic (Paris) 2004; 20: 767–772. [CrossRef] [EDP Sciences] [PubMed]
  41. Romero Y, Calve P, Neff S. Petites ARN non codants et spermatogenesis. Med Sic (Paris) 2012; 28: 490–496. [CrossRef] [EDP Sciences] [PubMed]
  42. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 2009; 16: 639–646. [CrossRef] [PubMed]
  43. Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013; 14: 523–534. [CrossRef] [PubMed]