Accès gratuit
Cet article est une note pour : [cet article]

Numéro
Med Sci (Paris)
Volume 29, Numéro 5, Mai 2013
Page(s) 487 - 494
Section Traduction
Publié en ligne 8 octobre 2014
  1. Chenais B. Transposable elements and human cancer: A causal relationship? Biochim Biophys Acta 2012; 1835: 28–35. [PubMed]
  2. Kazazian HH, Jr. Mobile elements: drivers of genome evolution. Science 2004; 303: 1626–1632. [CrossRef] [PubMed]
  3. Solyom S, Kazazian HH, Jr. Mobile elements in the human genome: implications for disease. Genome Med 2012; 4: 12. [CrossRef] [PubMed]
  4. Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442: 203–207. [PubMed]
  5. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442: 199–202. [PubMed]
  6. Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20: 1709–1714. [CrossRef] [PubMed]
  7. Watanabe T, Takeda A, Tsukiyama T, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 2006; 20: 1732–1743. [CrossRef] [PubMed]
  8. Grimson A, Srivastava M, Fahey B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455: 1193–1197. [CrossRef] [PubMed]
  9. Czech B, Malone CD, Zhou R, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008; 453: 798–802. [CrossRef] [PubMed]
  10. Ghildiyal M, Seitz H, Horwich MD, et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 2008; 320: 1077–1081. [CrossRef] [PubMed]
  11. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNA: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12: 246–258. [CrossRef] [PubMed]
  12. Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128: 1089–1103. [CrossRef] [PubMed]
  13. Nishimasu H, Ishizu H, Saito K, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491: 284–287. [CrossRef] [PubMed]
  14. Ipsaro JJ, Haase AD, Knott SR, et al. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 2012; 491: 279–283. [CrossRef] [PubMed]
  15. Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127: 1193–1207. [CrossRef] [PubMed]
  16. Kawaoka S, Izumi N, Katsuma S, Tomari Y. 3’ end formation of PIWIinteracting RNAs in vitro. Mol Cell 2011; 43: 1015–1022. [CrossRef] [PubMed]
  17. Saito K, Sakaguchi Y, Suzuki T, et al. Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi-interacting RNAs at their 3’ ends. Genes Dev 2007; 21: 1603–1608. [CrossRef] [PubMed]
  18. De Fazio S, Bartonicek N, Di Giacomo M, et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 2011; 480: 259–263. [CrossRef] [PubMed]
  19. Reuter M, Berninger P, Chuma S, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 2011; 480: 264–267. [CrossRef] [PubMed]
  20. Aravin AA, Sachidanandam R, Girard A, et al. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007; 316: 744–747. [CrossRef] [PubMed]
  21. Aravin AA, Bourc’his D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 2008; 22: 970–975. [CrossRef] [PubMed]
  22. Vourekas A, Zheng Q, Alexiou P, et al. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 2012; 19: 773–81. [CrossRef] [PubMed]
  23. Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 2006; 103: 13415–13420. [CrossRef]
  24. Bagijn MP, Goldstein LD, Sapetschnig A, et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012; 337: 574–578. [CrossRef] [PubMed]
  25. Lee HC, Gu W, Shirayama M, et al. C. elegans piRNAs mediate the genomewide surveillance of germline transcripts. Cell 2012; 150: 78–87. [CrossRef] [PubMed]
  26. Ashe A, Sapetschnig A, Weick EM, et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012; 150: 88–99. [CrossRef] [PubMed]
  27. Brennecke J, Malone CD, Aravin AA, et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 2008; 322: 1387–1392. [CrossRef] [PubMed]
  28. Grentzinger T, Armenise C, Brun C, et al. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22: 1877–1888. [CrossRef] [PubMed]
  29. Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54: 78–92. [CrossRef] [PubMed]
  30. Chuma S, Pillai RS. Retrotransposon silencing by piRNAs: ping-pong players mark their sub-cellular boundaries. PLoS Genet 2009; 5: e100. [CrossRef] [PubMed]
  31. Tanaka T, Hosokawa M, Vagin VV, et al. Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci USA 2011; 108: 10579–10584. [CrossRef]
  32. Tam OH, Aravin AA, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008; 453: 534–538. [CrossRef] [PubMed]
  33. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453: 539–543. [CrossRef] [PubMed]
  34. Wang J, Li LC. Small RNA and its application in andrology and urology. Transl Androl Urol 2012; 1: 33–43. [PubMed]
  35. Gu A, Ji G, Shi X, et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod 2010; 25: 2955–261. [CrossRef] [PubMed]
  36. Siddiqi S, Terry M, Matushansky I. Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PLoS One 2012; 7: e33711. [CrossRef] [PubMed]
  37. Bamezai S, Rawat VP, Buske C. The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 2012; 30: 2603–2611. [CrossRef] [PubMed]
  38. Papin C, Simonelig M. Contrôle du développement embryonnaire par des petits ARN issus de transposons. Med Sci (Paris) 2011; 27: 1050–1052. [CrossRef] [EDP Sciences] [PubMed]
  39. Dunoyer P. La bataille du silence: mécanisme et inhibition du RNA silencing au cours des interactions plante/virus. Med Sic (Paris) 2009; 25: 505–511. [CrossRef] [EDP Sciences] [PubMed]
  40. Robert V, Bruceton A. Regulation de expression des sequences repeats et interference par learn. Med Sic (Paris) 2004; 20: 767–772. [CrossRef] [EDP Sciences] [PubMed]
  41. Romero Y, Calve P, Neff S. Petites ARN non codants et spermatogenesis. Med Sic (Paris) 2012; 28: 490–496. [CrossRef] [EDP Sciences] [PubMed]
  42. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol 2009; 16: 639–646. [CrossRef] [PubMed]
  43. Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013; 14: 523–534. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.