Accès gratuit
Numéro
Med Sci (Paris)
Volume 28, Numéro 11, Novembre 2012
Page(s) 970 - 975
Section M/S Revues
DOI http://dx.doi.org/10.1051/medsci/20122811016
Publié en ligne 12 novembre 2012
  1. Peyron JF. Les multiples rôles de l’ubiquitinylation des protéines. Med Sci (Paris) 2001 ; 17 : 1327–1329. [CrossRef] [EDP Sciences]
  2. Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009 ; 10 : 319–331. [CrossRef] [PubMed]
  3. Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009 ; 10 : 755–764. [CrossRef] [PubMed]
  4. Robinson PA, Ardley HC. Ubiquitin-protein ligases-novel therapeutic targets? Curr Protein Pept Sci 2004 ; 5 : 163–176. [CrossRef] [PubMed]
  5. Langdon WY, Hartley JW, Klinken SP, et al. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci USA 1989 ; 86 : 1168–1172. [CrossRef]
  6. Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains: from structures to functions. Nat Rev Mol Cell Biol 2009 ; 10 : 659–671. [CrossRef] [PubMed]
  7. Thien CB, Langdon WY. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001 ; 2 : 294–307. [CrossRef] [PubMed]
  8. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters, Oncogene 2001 ; 20 : 6382–6402. [CrossRef] [PubMed]
  9. Baron R. L’ostéoclaste et les mécanismes moléculaires de la résorption osseuse. Med Sci (Paris) 2001 ; 17 : 1260–1269. [CrossRef] [EDP Sciences]
  10. Marie P. Différenciation, fonction et contrôle de l’ostéoblaste.Med Sci (Paris) 2001 ; 17 : 1252–1259. [CrossRef] [EDP Sciences]
  11. Chiusaroli R Sanjay A, Henriksen K, et al. Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate, delaying resorption and ossification of cartilage during the development of long bones. Dev Biol 2003 ; 261 : 537–547. [CrossRef] [PubMed]
  12. Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2005 ; 208 : 106–125. [CrossRef] [PubMed]
  13. Sanjay A, Miyazaki T, Itzstein C, et al. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006 ; 273 : 5442–5456. [CrossRef] [PubMed]
  14. Adapala NS, Barbe MF, Langdon WY, et al. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival. J Biol Chem 2010 ; 285 : 36745–36758. [CrossRef] [PubMed]
  15. Nakajima A, Sanjay A, Chiusaroli R, et al. Loss of Cbl-b increases osteoclast bone-resorbing activity and induces osteopenia. J Bone Miner Res 2009 ; 24 : 1162–1172. [CrossRef] [PubMed]
  16. Purev E, Neff L, Horne WC, Baron R. c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from beta-tubulin, stabilizing microtubules and podosomes. Mol Biol Cell 2009 ; 20 : 4021–4030. [CrossRef] [PubMed]
  17. Guénou H, Kaabeche K, Dufour C, et al. Down-regulation of ubiquitin ligase Cbl induced by twist haploinsufficiency in Saethre-Chotzen syndrome results in increased PI3K/Akt signaling and osteoblast proliferation. Am J Pathol 2006 ; 169 : 1303–1311. [CrossRef] [PubMed]
  18. Kaabeche K, Lemonnier J, Le Mée S, et al. Cbl-mediated degradation of Lyn and Fyn induced by constitutive FGFR-2 activation supports osteoblast differentiation. J Biol Chem 2004 ; 279 : 36259–36267. [CrossRef] [PubMed]
  19. Miraoui H, Ringe J, Häupl T, Marie PJ. Increased EGF- and PDGFα- receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet 2010 ; 19 : 1678–1689. [CrossRef] [PubMed]
  20. Miraoui H, Marie PJ. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Science Signaling 2010 ; 3 : re9. [CrossRef] [PubMed]
  21. Dufour C, Guénou H, Kaabeche K, et al. FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Bone, 2008 ; 42 : 1032–1039. [CrossRef] [PubMed]
  22. Kaabeche K, Guénou H, Bouvard D, et al. Cbl-mediated ubiquitination of alpha5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. J Cell Sci 2005 ; 118 : 1223–1232. [CrossRef] [PubMed]
  23. Brennan T, Adapala NS, Barbe MF, et al. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation. Calcif Tissue Int 2011 ; 89 : 396–410. [CrossRef] [PubMed]
  24. Suzue N, Nikawa T, Onishi Y, et al. Ubiquitin ligase Cbl-b downregulates bone formation through suppression of IGF-I signaling in osteoblasts during denervation. J Bone Miner Res 2006 ; 21 : 722–734. [CrossRef] [PubMed]
  25. Sévère N, Miraoui H, Marie PJ. The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 2011 ; 286 : 24443–24450. [CrossRef] [PubMed]
  26. Kumar EA, Charvet CD, Lokesh GL, Natarajan A. High-throughput fluorescence polarization assay to identify inhibitors of Cbl(TKB)-protein tyrosine kinase interactions. Anal Biochem 2011 ; 411 : 254–260. [CrossRef] [PubMed]
  27. Kumar EA, Yuan Z, Palermo NY, et al. Peptide truncation leads to a twist and an unusual increase in affinity for casitas B-lineage lymphoma tyrosine kinase binding domain. J Med Chem 2012 ; 55 : 3583–3587. [CrossRef] [PubMed]
  28. Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 2006 ; 66 : S7–S19. [CrossRef] [PubMed]
  29. Naramura M, Nadeau S, Mohapatra B, et al. Mutant Cbl proteins as oncogenic drivers in myeloproliferative disorders. Oncotarget 2011 ; 2 : 245–250. [PubMed]
  30. Kales SC, Ryan PE, Nau MM, Lipkowitz S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 2010 ; 70 : 4789–4794. [CrossRef] [PubMed]
  31. Tan YH, Krishnaswamy S, Nandi S, et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET, EGFR tyrosine kinases. PLoS One 2010 ; 5 : e8972. [CrossRef] [PubMed]
  32. Pray TR, Parlati F, Huang J, et al. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 2002 ; 5 : 249–258. [CrossRef] [PubMed]
  33. Sévère N, Dieudonné F-X, Marty C, et al. Targeting the E3 ubiquitin ligase c-Cbl decreases osteosarcoma cell growth and survival and reduces tumorigenesis. J Bone Miner Res 2012 ; 27 : 2108–2117. [CrossRef] [PubMed]
  34. Shi D, Grossman SR. Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biol Ther 2010 ; 10 : 737–747. [CrossRef] [PubMed]
  35. Baldin V, Coux O. L’étiquette de la mort. Med Sci (Paris) 2004 ; 20 : 1156–1157. [CrossRef] [EDP Sciences] [PubMed]