Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 12, Décembre 2005
Page(s) 1054 - 1062
Section M/S revues
DOI https://doi.org/10.1051/medsci/200521121054
Publié en ligne 15 décembre 2005
  1. Ehrlich P Herta CA, Shigas K. Über einige Verwendungen der Naphtochinosuflsaure. Z Physiol Chem 1904; 61 : 379–92. [Google Scholar]
  2. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256 : 495–7. [Google Scholar]
  3. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982; 306 : 517–22. [Google Scholar]
  4. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods 2005; 36 : 3–10. [Google Scholar]
  5. Qu Z, Griffiths GL, Wegener WA, et al. Development of humanized antibodies as cancer therapeutics. Methods 2005; 36 : 84–95. [Google Scholar]
  6. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules : mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984; 81 : 6851–5. [Google Scholar]
  7. Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321 : 522–5. [Google Scholar]
  8. Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies : from anti-Tac to Zenapax. Methods 2005; 36 : 69–83. [Google Scholar]
  9. Tamura M, Milenic DE, Iwahashi M, et al. Structural correlates of an anticarcinoma antibody : identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 2000; 164 : 1432–41. [Google Scholar]
  10. Zhang W, Feng J, Li Y, et al. Humanization of an anti-human TNF-alpha antibody by variable region resurfacing with the aid of molecular modeling. Mol Immunol 2005; 42 : 1445–51. [Google Scholar]
  11. Roguska MA, Pedersen JT, Keddy CA, et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci USA 1994; 91 : 969–73. [Google Scholar]
  12. Padlan EA. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 1991; 28 : 489–98. [Google Scholar]
  13. Houghton AN, Scheinberg DA. Monoclonal antibody therapies-a ’constant’ threat to cancer. Nat Med 2000; 6 : 373–4. [Google Scholar]
  14. Zum Buschenfelde CM, Hermann C, Schmidt B, et al. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002; 62 : 2244–7. [Google Scholar]
  15. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344 : 783–92. [Google Scholar]
  16. Elkin EB, Weinstein MC, Winer EP, et al. HER-2 testing and trastuzumab therapy for metastatic breast cancer : a cost-effectiveness analysis. J Clin Oncol 2004; 22 : 854–63. [Google Scholar]
  17. Ames SA, Gleeson CD, Kirkpatrick P. Omalizumab. Nat Rev Drug Discov 2004; 3 : 199–200. [Google Scholar]
  18. Holgate ST, Djukanovic R, Casale T, Bousquet J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases : an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy 2005; 35 : 408–16. [Google Scholar]
  19. Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alph4 beta1 integrin. Nature 1992; 356 : 63–6. [Google Scholar]
  20. Noseworthy JH, Kirkpatrick P. Natalizumab. Nat Rev Drug Discov 2005; 4 : 101–2. [Google Scholar]
  21. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348 : 15–23. [Google Scholar]
  22. Van Assche G, Van Ranst M, Sciot R, et al. Progressive Multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med online 9 juin 2005. [Google Scholar]
  23. Feagan BG, Greenberg GR, Wild G, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4 beta7 integrin. N Engl J Med 2005; 352 : 2499–507. [Google Scholar]
  24. Osbourn J, Groves M, Vaughan T. From rodent reagents to human therapeutics using antibody guided selection. Methods 2005; 36 : 61–8. [Google Scholar]
  25. Jespers LS, Roberts A, Mahler SM, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (NY) 1994; 12 : 899–903. [Google Scholar]
  26. Wu H, Dall’Acqua WF. Humanized antibodies and their applications. Methods 2005; 36 : 1–2. [Google Scholar]
  27. Anderson PJ. Tumor necrosis factor inhibitors : clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum 2005; 34 : 19–22. [Google Scholar]
  28. Ritter G, Cohen LS, Williams C Jr, et al. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res 2001; 61 : 6851–9. [Google Scholar]
  29. Kuus-Reichel K, Grauer LS, Karavodin LM, et al. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies ? Clin Diagn Lab Immunol 1994; 1 : 365–72. [Google Scholar]
  30. DeNardo GL, Bradt BM, Mirick GR, DeNardo SJ. Human antiglobulin response to foreign antibodies : therapeutic benefit ? Cancer Immunol Immunother 2003; 52 : 309–16. [Google Scholar]
  31. Mirick GR, Bradt BM, Denardo SJ, Denardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 2004; 48 : 251–7. [Google Scholar]
  32. Kimball JA, Norman DJ, Shield CF, et al. The OKT3 antibody response study : a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl Immunol 1995; 3 : 212–21. [Google Scholar]
  33. Gura T. Therapeutic antibodies : magic bullets hit the target. Nature 2002; 417 : 584–6. [Google Scholar]
  34. Reichert JM. Monoclonal antibodies in the clinic. Nat Biotechnol 2001; 19 : 819–22. [Google Scholar]
  35. Featherstone J, Griffiths S. From the analyst’s couch. Drugs that target angiogenesis. Nat Rev Drug Discov 2002; 1 : 413–4. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.