Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 4, Avril 2002
Page(s) 448 - 456
Section M/S Revues : Articles de Synthèse
DOI https://doi.org/10.1051/medsci/2002184448
Publié en ligne 15 avril 2002
  1. Ekker M, Akimenkko M. Le poisson zèbre (danio rerio), un modèle en biologie du développement. Med Sci 1991; 7 : 553–60. [Google Scholar]
  2. L’ensemble du numéro. Development 1996; 123 : 1–460. [Google Scholar]
  3. Stainier DY. Zebrafish genetics and vertebrate heart formation. Nat Rev 2001; 2 : 39–48. [Google Scholar]
  4. Grépin C, Durocher D, Nemer M. Le cœur : un programme unique de transcription et de différenciation musculaire. Med Sci 1995; 11 : 395–405. [Google Scholar]
  5. Grow MW, Krieg PA. Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman related genes, XNkx2-3 and XNkx2-5. Dev Biol 1998; 204 : 187–96. [Google Scholar]
  6. Schlange T, Andree B, Arnold HH, Brand T. BMP2 is required for early heart development during a distinct time period. Mech Dev 2000; 91 : 259–70. [Google Scholar]
  7. Nguyen VH. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors are established by a bmp2b/swirl pathway of genes. Dev Biol 1998; 199 : 93–110. [Google Scholar]
  8. Schier AF, Neuhauss SC, Helde KA, Talbot WS, Driever W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 1997; 124 : 327–42. [Google Scholar]
  9. Zhang J, Talbot WS, Schier AF. Positional cloning identifies zebrafish One-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92 : 241–51. [Google Scholar]
  10. Gritsman K, Zhang J, Cheng S, et al. The EGF-CFC protein One eyed pinhead is essential for Nodal signaling. Cell 1999; 97 : 121–32. [Google Scholar]
  11. Sjhalaby F, Rossant J, Yamaguchi T P, et al. Failure of blood island formation and vasculogenesis in Flk-1 deficient mice. Nature 1995; 376 : 62–6. [Google Scholar]
  12. Liao W, Bisgrove BW, Sawyer H, et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 1997; 124 : 381–9. [Google Scholar]
  13. Stainier DYR, Weinstein BM, Detrich HW, Zon LI, Fishman MC. Cloche, an early acting zebrafish gene is required by both endothelial and hematopoietic lineages. Development 1995; 121 : 3141–50. [Google Scholar]
  14. Vandenbunder B, Fafeur V, Wernert N, Stehelin D. Analyse moléculaire de l’angiogenèse tumorale. Med Sci 1994; 10 : 516–27. [Google Scholar]
  15. Alexander J, Rothenberg M, Henry GL, Stainier DYR. Casanova plays an early and essential role in endoderm formation in zebrafish. Dev Biol 1999; 215 : 343–57. [Google Scholar]
  16. Kikuchi Y, Trinh L, Reiter JF, Alexander A, Yelon D, Stainier DYR. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev 2000; 14 : 1279–89. [Google Scholar]
  17. Yelon D, Ticho B, Halpern M, et al. The bHLH transcription factor hand2 plays parallel role in zebrafish heart and in pectoral fin development. Development 2000; 127 : 2573–82. [Google Scholar]
  18. Peyrieras N, Strähle U, Rosa F. Conversion of zebrafish blastomere to an endodermal fate by TGFbeta-related signaling. Curr Biol 1998; 8 : 783–6. [Google Scholar]
  19. Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000; 349 : 385–402. [Google Scholar]
  20. Yelon D, Horne SA, Stainier DY. Restricted expression of cardiac myosin genes reveales regulated aspects of heart tube assembly in zebrafish. Dev Biol 1999; 214 : 23–37. [Google Scholar]
  21. Lin Q, Schwartz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997; 276 : 1404–7. [Google Scholar]
  22. Hob ME, Thomsen GH. Tbx5 is essential for heart development. Development 1999; 126 : 1739–51. [Google Scholar]
  23. Yutzey KE, Rhee JT, Bader D. Expession of atrial specific myosin heavy chain AMHC1 and the etablishment of anterior polarity in the developing chicken heart. Development 1994; 120 : 171–83. [Google Scholar]
  24. Alexander J, Stainier DY, Yelon D. Screening mosaic F1 females for mutations affecting zebrafish heart and induction and patterning. Dev Genet 1998; 33 : 288–99. [Google Scholar]
  25. Xavier-Nato J, Shapiro MD, Houghton L, Rosenthal N. Sequential program of retinoic acid synthesis in the myocardial and the epicardial layers of the developing avian heart. Dev Biol 2000; 219 : 129–41. [Google Scholar]
  26. Hu N, Sedmera D, Yost HJ, Clark EB. Structure and function of the developing zebrafish heart. Anat Rec 0; 260 : 148–57. [Google Scholar]
  27. Stainier DY, Fouquet B, Chen JN, et al. Mutations affecting the formation and the function of the cardiovascular system in zebrafish embryo. Development 1996; 102 : 285–92. [Google Scholar]
  28. Nasevicius A, Ekker SC. Effective targeted gene « knockdown » in zebrafish. Nat Genet 2000; 26 : 216–20. [Google Scholar]
  29. Scheer N, Campos-Ortega JA. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 1999; 80 : 153–8. [Google Scholar]
  30. Chen JN, Haffter P, Odenthal J, et al. Mutations affecting the cardiovascular system and other organs in zebrafish. Development 1996; 123 : 293–302. [Google Scholar]
  31. Halloran MC, Sato-Maeda M, Warren JT, et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 2000; 127 : 1953–60. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.