Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 2, Février 2002
Page(s) 237 - 250
Section Repères : Lexique
DOI https://doi.org/10.1051/medsci/2002182237
Publié en ligne 15 février 2002
  1. Stormo GD. Consensus patterns in DNA. Meth Enzymol 1990; 183 : 211–21. [Google Scholar]
  2. Sagot MF. Spelling approximate repeated or common motifs using a suffix tree. In : Lucchesi CL, Moura AV, eds. LATIN’98 : theoretical informatics lecture notes in computer science, vol. 1380. Berlin: Springer-Verlag, 1998 : 111–27. [Google Scholar]
  3. Bailey TL, Elkan C. ParaMEME, a parallel implementation and a web interface for a DNA and protein motif discovery tool. Comput Appl BIOSci 1996; 12 : 303–10. [Google Scholar]
  4. Reinert G, Schbath S, Waterman MS. Probabilistic and statistical properties of words: an overview. J Comput Biol 2000; 7 : 1–46. [Google Scholar]
  5. d’Aubenton Carafa Y, Brody E, Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol 1990; 216 : 835–58. [Google Scholar]
  6. Prestridge DS. Predicting Pol II promoter sequence using transcription factor binding sites. J Mol Biol 1995; 249 : 923–32. [Google Scholar]
  7. Tolstrup N, Rouzé P, Brunak S. A branch point consensus from Arabidopsis found by non circular analysis allows for better prediction of acceptor sites. Nucleic Acids Res 1997; 25 : 3159–63. [Google Scholar]
  8. Brendel V, Kleffe J, Carle Urioste JC, Walbot V. Prediction of splice sites in plant pre-mRNA from sequence properties. J Mol Biol 1998; 276 : 85–104. [Google Scholar]
  9. Pedersen AG, Nielsen H. Neutral network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. In : Gaasterland T, Karp P, Karplus K, Ouzounis C, Sander C, Valencia A, eds. The fifth international conference on intelligent systems for molecular biology. Halkidiki ,Greece: AAAI/MIT Press, 1997 : 226–33. [Google Scholar]
  10. Borodovsky M, McIninch JD. GeneMark : parallel gene recognition for both DNA strands. Comp Chem 1993; 17 : 123–33. [Google Scholar]
  11. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res 1998; 26 : 544–8. [Google Scholar]
  12. Burge C, Karlin S. Prediction of complete gene structure in human genomic DNA. J Mol Biol 1998; 268 : 78–94. [Google Scholar]
  13. Salzberg SL, Pertea M., Delcher AL, Gardner MJ, Tettelin H. Interpolated Markov models for eucaryotic gene finding. Genomic 1999; 59 : 24–31. [Google Scholar]
  14. Snyder EE, Stormo GD. Identification of protein coding regions in genomic DNA. J Mol Biol 1998; 248 : 1–18. [Google Scholar]
  15. Salzberg SL, Delcher AL, Fasman K, Henderson J. A decision tree system for finding genes in DNA. J Comput Biol 1998; 5 : 667–80. [Google Scholar]
  16. Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 1998; 26 : 1107–15. [Google Scholar]
  17. Krogh A. Two methods for improving performance of a HMM and their application for gene finding. In : Gaasterland T, Karp P, Karplus K, Ouzounis C, Sander C, Valencia A eds. The fifth international conference on intelligent systems for molecular biology. Halkidiki Greece: AAAI/MIT Press, 1997 : 179–86. [Google Scholar]
  18. Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 1998; 8 : 967–74. [Google Scholar]
  19. Jiang J, Jacob HJ. EbEST: an automated tool using expressed sequence tags to delineate gene structure. Genome Res 1998; 8 : 268–75. [Google Scholar]
  20. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000; 28 : 45–8. [Google Scholar]
  21. Bocs S, Danchin A, Médigue C. Re-annotation of genomes microbial CoDing Sequences : finding new genes and inaccurately annotated genes. BMC BioInformatics 2002 (sous presse). [Google Scholar]
  22. Borodovsky M, McIninch J, Médigue C, Rudd K, Danchin A. Detection of new genes in the bacterial genome using Markov models for three gene classes. Nucleic Acids Res 1995; 17 : 3554–62. [Google Scholar]
  23. Guédon Y. Computational methods for discrete hidden semi-Markov chains. Appl Stochastic Models Business Industry 1999; 15 : 195–224. [Google Scholar]
  24. Bork P. Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res 2000; 10 : 398–400. [Google Scholar]
  25. Pavy N, Rombauts S, Dehais P, et al. Evaluation of gene prediction software using a genomic data set : application to Arabidopsis thaliana sequences. Bioinformatics 1999; 15 : 887–99. [Google Scholar]
  26. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409 : 860–921. [Google Scholar]
  27. Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25 : 3389–402. [Google Scholar]
  28. Hofmann K, Bucher P, Falquet L, Bairoch A. The PROSITE database, its status in 1999. Nucleic Acids Res 1999; 27 : 215–9. [Google Scholar]
  29. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res 2000; 28 : 263–6. [Google Scholar]
  30. Brazma A. On the importance of standardisation in life sciences. Bioinformatics 2001; 17 : 113–4. [Google Scholar]
  31. Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28 : 235–42. [Google Scholar]
  32. Nitschké P, Guerdoux-Jamet P, Chiapello H, et al. Indigo: a world-wide-web review on genomes and gene functions. FEMS Microbiol Rev 1998; 22 : 207–27. [Google Scholar]
  33. Salgado H, Santos A, Garza-Ramos U, van Helden J, Diaz E, Collados-Vides J. RegulonDB (version 2.0): a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res 1999; 27 : 59–60. [Google Scholar]
  34. Wingender E, Chen X, Fricke E, et al. The TRANSFAC system on gene expression regulation. Nucleic Acids Res 2001; 29 : 281–3. [Google Scholar]
  35. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28 : 33–6. [Google Scholar]
  36. Overbeek R, Larsen L, Maltsev N, Pusch GD, Selkov E. WIT: a system for metabolic reconstructions and comparative analysis of the genomes. In : Letovsky C, Kluwer S, eds. Mol Biol Databases 2002 (sous presse). [Google Scholar]
  37. Riley M, Labedan B. Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of structural segment of homology, the module. J Mol Biol 1997; 269 : 1–12. [Google Scholar]
  38. Perrière G, Duret L, Gouy M. HOBACGEN: database system for comparative genomics in bacteria. Genome Res 2000; 10 : 379–85. [Google Scholar]
  39. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 1999; 96 : 2896–901. [Google Scholar]
  40. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a webserver to retrieve and display the repeatedly occuring neighbourhood of a gene. Nucleic Acids Res 2000; 28 : 3442–4. [Google Scholar]
  41. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28 : 29–34. [Google Scholar]
  42. Karp PD. Integrated access to metabolic and genomic data. J Comp Biol 1996; 3 : 191–212. [Google Scholar]
  43. Gaasterland T, Sensen CW. Fully automated genome analysis that reflects user needs and preferences. A detailled introduction to the MAGPIE system architecture. Biochimie 1996; 78 : 302–10. [Google Scholar]
  44. Frishman D, Albermann K, Hani J, et al. Functional and structural genomics using PEDANT. Bioinformatics 2001; 17 : 44–57. [Google Scholar]
  45. Andrade M, Brown N, Leroy C, et al. Automated genome sequence analysis and annotation. Bioinformatics 1999; 15 : 391–412. [Google Scholar]
  46. Bailey LC, Fischer S, Schug J, Crabtree J, Gibson M, Overton GC. GAIA: framework annotation of genomic sequence. Genome Res 1998; 8 : 234–50. [Google Scholar]
  47. Walker DR, Koonin EV. SEALS: a system for easy analysis of lots of sequences. In: Menlo Park A, ed. Proceedings of the international conference on intelligent systems for molecular biology. Halkidiki, Greece: AAAI/MIT Press, 1997 : 333–9. [Google Scholar]
  48. Harris NL. Genotator: a workbench for sequence annotation. Genome Res 1997; 7 : 754–62. [Google Scholar]
  49. Médigue C, Rechenmann F, Danchin A, Viari A. Imagene : an integrated computer environment for sequence annotation and analysis. Bioinformatics 1999; 15 : 2–15. [Google Scholar]
  50. Rutherford J, Parkhill J, Crook T, et al. Artemis: sequence visualisation and annotation. Bioinformatics 2000; 16 : 944–5. [Google Scholar]
  51. Galperin MY, Koonin EV. Sources of systematic error in functional annotation of genomes : domain rearrangement, non-orthologous gene displacement, and operon disruption. In Silico Biol 1998; 1 : 0007. [Google Scholar]
  52. Fitch W. Distinguishing homologous from analogous protein. Syst Zool 1970; 19 : 99–113. [Google Scholar]
  53. Fitch W. Homology a personal view on some of the problem. Trends Genet 2000; 16 : 2277–23. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.