Accès gratuit
Numéro
Med Sci (Paris)
Volume 18, Numéro 2, Février 2002
Page(s) 169 - 180
Section M/S Revues : Articles de Synthèse
DOI http://dx.doi.org/10.1051/medsci/2002182169
Publié en ligne 15 février 2002
  1. Wilmut I, Schnieke AE, Mc Whir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385 : 810–3.
  2. Weissman IL. Stem cells : units of development, units of regeneration, and units in evolution. Cell 2000; 100 : 157–68.
  3. Fuchs E, Segre JA. Stem cells: a new lease on life Cell 2000; 100 : 143–55.
  4. Claeys A, Huriet C. Le clonage, la thérapie cellulaire et l’utilisation thérapeutique des cellules embryonnaires. Rapport de l’Office Parlementaire d’Évaluation des Choix Scientifiques et Technologiques, 2000; 2198 : 181 p.
  5. Verlhac MH, Kubiak JZ, Clarke HJ, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 1994; 120 : 1017–25.
  6. Ciemerych MA, Maro B, Kubiak JZ. Control of duration of the first two mitoses in a mouse embryo. Zygote 1999; 7 : 293–300.
  7. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997; 181 : 296–307.
  8. Schultz RM, Davis W Jr, Stein P, Svoboda P. Reprogramming of gene expression during preimplantation development. J Exp Zool 1999; 285 : 276–82.
  9. Thompson EM, Legouy E, Renard JP. Mouse embryos do not wait for the MBT: chromatin and RNA polymerasere modeling in genome activation at the onset of development. Dev Genet 1998; 22h31–42.
  10. Mutchardt C, Yaniv M. ATP-dependent chromatin remodelling: SWI/SNF and Co are on the job. J Mol Biol 1999; 293 : 187–98.
  11. Legouy E, Thompson EM, Muchardt C, Renard JP. Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein. Dev Dyn 1998; 212 : 38–48.
  12. Krebs JE, Fry CJ, Samuels ML, Peterson CL Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 2000; 102 : 587–98.
  13. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell 1999, 99 : 451–4.
  14. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001; 293 : 1089–93.
  15. Bourc’his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryons. Curr Biol 2001; 11 : 1542–6.
  16. Kang YK, Koo DB, Park JS, et al. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 2001; 28 : 173–7.
  17. Renard JP, Zhou Qi, LeBourhis D, et al. Nuclear transfer technologies: between successes and doubts. Theriogenology 2002; 57 : 203–22.
  18. Heyman Y, Chavatte-Palmer P, LeBourhis D, Camous S, Vignon X, Renard JP. Frequency and occurrence of late gestation losses from cattle cloned embryos. Biol Reprod 2002; 66 : 6–13.
  19. Campbell KHS, Loi P, Otaegui PJ, Wilmut I. Cell cycle coordination in embryo cloning by nuclear transfer. Rev Reprod 1996; 1 : 40–6.
  20. Zhou Q, Jouneau A, Brochard V, Adenot P, Renard JP. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod 2001; 65 : 412–9.
  21. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394 : 369–74.
  22. Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice. Science 2001; 293 : 95–7.
  23. Hill JR, Burghardt RC, Jones K, et al. Evidence for placental abnormality as the major cause of mortality in first trimester somatic cell bovine fetuses. Biol Reprod 2000; 63 : 1787–94.
  24. Ohgane J, Wakayama T, Kogo Y, et al. DNA methylation variation in cloned mice. Genesis 2001; 30 : 45–50.
  25. Eggan K, Akutsu H, Loring J, et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 2001; 98 : 6209–14.
  26. Doherty AS, Mann MRW, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000; 62 : 1526–35.
  27. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001; 64 : 918–26.
  28. Munsie MJ, Michalska AE, O’Brien CM, Trounson AO, Pera MF, Mountford PS. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 2000; 10 : 989–92.
  29. Kawase E, Yamazaki Y, Yagi T, Yanagimachi R, Pedersen RA. Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocyts. Genesis 2000; 28 : 156–63.
  30. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001; 292 : 740–3.
  31. Beddington RS, Robertson EJ. Anterior patterning in mouse. Trends Genet 1998; 14 : 277–84.
  32. Chen WS, Manova K, Weinstein DC, et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 1994; 8 : 2466–77.
  33. Barbacci E, Michaël R, Ott MO, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 1999; 126 : 4795–805.
  34. Martinez Barbera JP, Clements M, Thomas P, et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 2000; 127 : 2433–45.
  35. Jaenish R. DNA methylation and imprinting: why bother? Trends Genet 1997; 13 : 323–9.
  36. Epstein CJ, Smith S, Travis B, Tucker G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 1978; 274 : 500–3.
  37. Monk M, Harper MI. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 1979; 281 : 311–3.
  38. Tam PPL, Gad JM, Kinder SJ, Tsang TE, Behringer RR. Morphogenetic tissue movement and the establishment of body plan during development from blastocyst to gastrula in the mouse. Bioessays 2001; 23 : 508–17.
  39. Gu Z, Nomura M, Simpson BB, et al. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 1998; 12 : 844–57.
  40. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993; 361 : 543–7.
  41. Conlon FL, Lyons KM, Takaesu N, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994; 120 : 1919–28.
  42. Cibelli, JB, Kiessling AA, Cunniff K, Richards C, Lanza R, West M. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. J Regen Med 2001; 2 : 25–31.